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In this paper, we explore in detail the way in which quantum decoherence is treated in different
mixed quantum-classical molecular dynamics algorithms. The quantum decoherence time proves to
be a key ingredient in the production of accurate nonadiabatic dynamics from computer simulations.
Based on a short time expansion to a semiclassical golden rule expression due to Neria and Nitzan
[J. Chem. Phy€9, 1109(1993], we develop a new computationally efficient method for estimating

the decay of quantum coherence in condensed phase molecular simulations. Using the hydrated
electron as an example, application of this method finds that quantum decoherence times are on the
order of a few femtoseconds for condensed phase chemical systems and that they play a direct role
in determining nonadiabatic transition rates. The decay of quantum coherence for the solvated
electron is found to take=50% longer in BO than in HO, providing a rationalization for a long
standing puzzle concerning the lack of experimentally observed isotope effect on the nonadiabatic
transition rate: Although the nonadiabatic coupling is smaller y© Qlue to smaller nuclear
velocities, the smaller coupling inJ® adds coherently for a longer time than i@ leading to

nearly identical nonadiabatic transition rates. The implications of this isotope dependence of the
nonadiabatic transition rate on changes in the quantum decoherence time for electron transfer and
other important chemical reactions are discussed. 1996 American Institute of Physics.
[S0021-960606)51514-3

I. INTRODUCTION ality that we are considering a quantum electronic system
| q 4 oh hemical ‘ it and a classical nuclear bath. In such mixed quantum-classical
ibl nt many (I:otn fhnse h phase cden;]lca.stys er];n.s,t| 'Stpgss'ystems, the nuclear dynamics follows according to a given
sIble 10 simulate the physics and chemistry ot INterest BY, ;- atic potential surface associated with one of the eigen-
treating a few select degrees of freedom quantum mechani- . L .
. . ; . . . states of the electronic Hamiltonian. Thus the potential felt

cally while treating the remainder classicdllfhis is desir- .
) o . . by the nuclear degrees of freedom will depend strongly upon
able since it is not yet computationally practical to treat a .
the quantum state of the electronic degrees of freedom. The

condensed system entirely quantum mechanically, and fand mental distinction between ntum mechani nd
purely classical treatment misses much of the relevant phyS|—u amental distinction between qguantu echanics a

cal phenomena. In such a mixed quantum-classical simulacil""ssh'c"’lI rr;elzlchanlcs IS thatfa\t.quarfltutmtsystem c?n evolvimtp
tion, the positions of the classical degrees of freedom defin@ CONErent linéar superposition ot states. Quantum mechani-

a potential energy surface for the quantum subsystem of ircally, the effects of all alternative histories associated with

terest, while changes of the quantum subsystem in turn affedfliS coherent superposition, including those of tblassical
the classical dynamics. Whenever the energy of the classicB2th, must be considered. As the electronic wave function
motions coupled to the quantum system is comparable to thgV0IVes from an initially pure eigenstate to a coherent super-
quantum energy gap, energy transfer can take place betwe8fSition of eigenstates, alternative paths for the nuclei
the quantum and classical degrees of freeddinis type of ~€merge: Each path is associated with dynamics arising from
radiationless or nonadiabatic transition of the quantum substarting in an initial nuclear configuration and electronic state
system, corresponding to a breakdown of the Born-2nd ending in a different final nuclear configuration and final
Oppenheimer approximation for a quantum subsystem, playglectronic state. The nuclear dynamics for the different quan-
an important role in many fundamental chemical processe!m paths diverge in both position and phase, leading to
including internal conversion, electron, proton, and otherdestructive interference between the nuclear wave functions
charge transfer reactions, electronic energy transfer, and irassociated with these paths. This effect is known as quantum
tramolecular energy redistribution. decoherencd.

One of the key issues in describing nonadiabatic transi-  Since quantum decoherence acts to dissipate long lived
tions in the condensed phase is the proper treatment of tteuperpositions of states, it profoundly diminishes the transi-
short-lived phase coherence between the quantum wau@n probability between quantum states which are coupled
function and the classic#bath degrees of freedorhin the by the nuclear dynamics> Correspondingly, when the loss
following discussion, we will assume without loss of gener-of quantum phase coherence between the electronic and
nuclear degrees of freedom is neglected, which is a typical

dpresent address: Institute for Polymers and Organic Solids, University oﬁpprOX'maﬂon made in many ) mixed 'quantum-cla.ssmal
California at Santa Barbara, Santa Barbara, CA 93106-5090. treatments$, the expected result will be an incorrect estimate
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of the transition probabilities and other associated physicatal quantities by providing an algorithm for mixed quantum-
observables. Because of the tremendous utility of mixealassical molecular simulations with the inclusion of nona-
quantum-classical treatments in simulating condensed phaskabatic transitions:®*1*°Due to the divergence of classical
phenomena, it is thus of paramount importance to be able ttrajectories propagated under the influence of different elec-
properly incorporate the effects of quantum decoherence itronic states of the quantum system, running classical trajec-
such simulations. tories on a single weighted adiabatic potential is usually in-
The purpose of this paper is to explore the approximaadequate to describe the physics of inteté3b account for
tions inherent in the treatment of quantum decoherence ithis, the techniques discussed below incorporate stochastic
mixed quantum-classical computer simulations to better unsurface hopping, where the probability of dynamically hop-
derstand the role of decoherence in fundamental nonadiging to a different electronic surface depends on nonadia-
batic chemical processes. In the following section, severabatic coupling coefficients computed during the course of the
methods for estimating nonadiabatic transition rates usingrajectory. Both the classical dynamics and the nonadiabatic
molecular dynamics are discussed, and the assumptions fransition probabilities depend directly on how these algo-
each for dealing with the issue of quantum decoherence amthms treat quantum coherence. Thus the decoherence time
made explicit. Central to all the methods is the issue of thelays a direct role in determining physical properties calcu-
decoherence time scale: that is, over which time scale musated from ensemble averages of nonadiabatic computer tra-
one consider the quantum phase evolution of the bath ifectories.
computing trap3|t|on prppablllt|es? Sect|on_lll presents 3A. Semiclassical transition rates from Fermi's golden
new, computationally efficient method for estimating the de-ru
coherence time based on extension of a golden rule formal-
ism originally developed by Neria and Nitzaf®. This new For a generalized mixed quantum-classical system, the
method is illustrated in Sec. IV utilizing the paradigm of quantum mechanical coordinates of interest will be specified
nonadiabatic condensed phase systems, the hydrated eld®.r, while the remaining classical degrees of freedom will
tron. Section V demonstrates the role of the isotope effect ifpe labeledR. The language we use throughout this paper
altering both the decoherence time and the magnitude of théefers to the quantum coordinates as “electronialthough
nonadiabatic coupling in the hydrated electron system, a reany quantized coordinate, such as a high frequency vibration,
sult which provides an explanation for the observed lack ofould also be usgdand the classical coordinates as the
an isotope effect on the nonadiabatic transition rate in recerituclear, or “bath.” The Hamiltonian for this mixed system is
femtosecond experiments. Finally, Sec. VI discusses the pd&iven by
tentially profound implications of this effect for many chemi-

cal systems, especially electron transfer reactions, and sum- H=Hy(r;R)+T(R), (1)
marizes the importance of correctly treating quantum
decoherence in nonadiabatic computer simulations. whereH(r;R) is the electronic Hamiltonian for a given set

of nuclear position®, andT(R) is the nuclear kinetic energy

operator. In the adiabatic approximation, the coupling of dif-
Il. MOLECULAR DYNAMICS AND NONADIABATIC ferent electronic states through the nuclear kinetic energy
TRANSITIONS operator,T(R), is neglected. Under this approximation, the

Due to the fundamental role of radiationless processes iadiabatic states are defined |ag
chemical reactivity, there is a large literature devoted to ex-
tracting nonadiabatic dynamical information from computer ~ Ho(r;R)|aj)=Ei| ), 2
simulations>®~*® The approaches considered in this section
fall into two general categories: nonadiabatic rate estimatewherei labels a particular electronic state and the explicit
based on perturbation thedfy:® and dynamical algorithms dependence on the electronic coordinadas been dropped
which incorporate electronic transition&1-1° for notational convenience. Within the adiabatic basis,
The first methods summarized utilize perturbation theory{a;(R)}, the nonadiabatic coupling matrix elemerits are
to provide an expression for the radiationless transition ratelefined as
in terms of nonadiabatic coupling matrix elements, which are
in turn evaluated by computer simulations on individual — T;;=(a;(R)|T(R)|a;(R))

adiabatic surfaces:1°Although this class of methods do not 22 2
prp_wd_e nonad|§ibat|c_ molecular _dyn_amm:er se they_ offer _ - E o0 (ai(R)| ?WJ'(R»' 3)
utility in a semiclassical determination of electronic transi- n

tion rates, especially for systems where the magnitude of the

nonadiabatic coupling is small. Many of the concepts underwhere theT;; are operators on the nuclear subspace and the

lying quantum decoherence as well as the basis for our nesum runs over all the nuclei which have maskgs.

method for estimating decoherence times are readily illus- Using first order time dependent perturbation thé8ry,

trated in the perturbative golden rule formalism, so we dethe nonadiabatic transition rate,; , between an initial elec-

vote particular attention to it below. tronic surfacea;) and another electronic surfagg) can be
The second class of methods provide access to dynamdescribed by the golden rule
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2 Increasing the nuclear velocities also increases the integrand,
kij=—- ; (ai(R)II(R)[T(R)|a(R)F(R))|?5(E; — Ey), as expectedthe rate should be higher in the presence of
4 faster nuclear motions due to breakdown of the adiabatic
approximation, but only the component of the velocity
where [I(R)) and [F(R)) are the nuclear states associatedajong the nonadiabatic force matrix element contributes. The
with the initial and final electronic states which have ener-gerall rate is proportional to the time integral of the auto-
giesE; andE,, respectively[Note that a thermal rate con- correlation of the coupling: The rate depends on the decay of
stant would also involve a Boltzmann average over the initiakne correlation of-v evaluated at time zero on surfaicand
electronic state which has not been included in @] By  F.y evaluated at timeé on surfacej. Thus not only is the
using the Fourier representation of the delta function and th?nagnitude of the coupling term important to the rate, but so
first equality of Eq.(3) in Eqg. (4), and then performing the s the time over which the two surfaces remain strongly
sum over final states, the golden rule expression becomes coypled. Propagation on the two different electronic surfaces
% . _ will lead to divergent nuclear velocities and nonadiabatic
Kij ZJ dt(I(R)| Ti;(R)eMi""T;; (R)e ™MiVH|1(R)), force matrix elements, so the-v coupling terms evaluated
o 5) on the two surfaces eventually become uncorrelated. It is
also important to note that there generally is interference
where H; and H; are the nuclear Hamiltonians associatedpetween successive regions of nonadiabatic coupling: Con-
with the two electronic states and are assumed to be defingflbutions to the integrand at later times could add either
from a common energy origin. We note that the nuclear coconstructively or destructively to those from earlier times,
ordinatesR=R(t) are parametrized by time. Equati¢s),  potentially producing a large effect on the overall transition
which is the starting point for many nonadiabatic calcula-rate.
tions in the literaturé;’®'° can be converted into a more Inspection of Eq(6) also reveals that the overall nona-
useful form for our purposes by using the second equality ofjiabatic transition rate is also modulated by the¢) term.
Eq. (3), employing the chain rule for differentiation and ne- Starting with a given set of nuclear positioRsat time zero
glecting the higher order terms involving secondand noting that by definitiod(0)=1, it is evident thatl(t)

derivative$® provides a measure of how the overlap of the nuclear wave
o A _ functions on the two surfaces decays as the nuclear positions
Kij J dt< E 2 Fo(RU(t)) -vg”(t) and phases diverge due to propagation with the two different

—®© n m

electronic Hamiltonians. Of particular importance, because
A A J(t) enters multiplicatively into the integrand in E@), the

XFm(R"(0)) 'VET'])(O)J(U> : (6)  decay ofJ(t) presents an upper limit for the time over which
coupling between the surfaces affects the transition rate. We

where will show below that, for the example of the hydrated elec-
JH tron, J(t) does indeed decay on a time scale faster than the

Fo(RD(1)=i(ai —(i°)|aj>_ (7)  autocorrelation of the nonadiabatic coupling matrix elements
IRn and hence plays an important role in determining the nona-

In the above expression’ the ang|ed brackets indicate an eﬁj.abatic transition rate. We define the time scale set by the
semble average over initial conditions, the sums run over théecay ofJ(t) as the quantum decoherence time. In most

different nucleiv{)(t) is the velocity of nucleus evaluated Nnonadiabatic molecular dynamics simulations, however,
after propagation along electronic surfacefor time t,  there are no nuclear wave functions with which to evaluate

Fn(R(l)(t)) is the matrix element of the “force” on nucleus this decoherence term. Thus mixed quantum'CIaSSical com-
(which has been propagated for timalong surfacé) evalu- ~ Puter simulations have relied on assumptions to incorporate
ated between the two adiabatic states, and the effects of decoherence into nonadiabatic dynamics and
U the estimation of radiationless transition rat@s2-1°
J(O=(1(R(0))[e"i"" e [1(R(0))). ®)

Equation (8) for J(t), the time-dependent overlap of the B. Nonadiabatic molecular dvnamics simulations
nuclear wave function propagated on the two different sur-—" ! ' u y Ics simuiatt

faces, makes use of the fact that the nuclear positions on both In a mixed quantum-classical simulation, the positions of
statesi andj are identical at time zero. the classical nuclei define an instantaneous classical potential
The physical interpretation underlying E() is rela-  energy surface for the quantum degrees of freedom. As the
tively straightforward. The system is initially in electronic bath particles move, the energies associated with the instan-
statei at time zero, and the classical coordinates have positaneous adiabatic electronic eigenstates will change. If the
tionsR("(0) and velocities/()(0). The nonadiabatic coupling quantum system is prepared in an adiabatic eigenstate, the
is given by a complex numbek.v, which is proportional to  coupling between the electronic states due to nuclear motion
the projection of the nuclear velocities along the force matrixof the bath particles generally produces a mixed quantum
element between the two states. In general, the two surfacesate in the adiabatic basis at later times. Because the classi-
are more strongly mixed wheh is large, leading to a larger cal particles are constrained to evolve only on the individual
integrand for the transition rate between the adiabatic stateadiabatic potential energy surfaces, a mixed quantum super-
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position provides many alternative instantaneous classicavi/herng) (R) is the force on the classical coordinaislue
pathways or histories. The divergence of these alternativeo the quantum system in adiabatic stateand the system
classical histories and the associated loss of phase coherertdamiltonianH=H(r;R) is as defined in Eq(l). The algo-
between them causes quantum decohergrigg.decoher- rithm then incorporates surface hopping, where the prob-
ence we mean there is a dissipation of contributions due tabilities to hop between adiabatic surfaags, are chosen to
guantum mechanical phase interference between the alternpgroduce the correct distribution of ensemble members con-
tive histories. Sets of histories which have lost coherence arsistent with the coherently propagated mixed wave function,
termed “coarse grained” and their associated weights are
summed together as ordinary probabilities as opposed to 2 At . .
quantum mechanical amplitud&sThe effect of this coarse 9i=% o RepjiR-di; ]O(—Re pjiR-d;j)]), (13
graining is the projection of the quantum system into an
adiabatic eigenstatgsince outside of regions of strong cou- where At is the time step, an®(x) is the Heaviside step
pling, the system must eventually be described by probabilifunction which ensures the system undergoes the fewest
ties for occupation of alternative electronic eigensfates number of transitions between adiabatic states.
Thus, the coupling to the bath serves both to destroy adiaba- To produce nonadiabatic dynamics with the fewest
ticity by producing quantum superposition states from answitches algorithm, the system generally begins in an adia-
initial adiabatic eigenstate, and to restore adiabaticity byhatic eigenstate, and then the classical nuclear and quantum
eliminating the coherences in the superposition via coarsgynamics are propagated for one time step using (E2).
graining, which resolves the quantum system back into inand Eq.(10).? This produces a mixed quantum state at the
stantaneous adiabatic eigenstatésif the mixed quantum end of the step, so surface hopping is used to select an adia-
state is Comprised of a fraction of the initial adiabatic statepatic state for propagating the next step by Comparing the
with components of other adiabatic states, there will be som@uantityg;; from Eq.(13) to a random number. If no switch
probability that the collapsed wave function corresponds to ®etween states is made, propagation simply continues to the
different final adiabatic state. This view of mixed quantum-next step. If a switch between statesand j occurs, the
classical dynamics, where adiabatic states evolve into quarnergy excess or deficit in the quantum coordinates is dis-
tum mixed states and are subsequently projected back intotgbuted among the classical coordinates along the nonadia-
new adiabatic basis, forms the essence underlying surfaggatic coupling vectod;; , defined in Eq.(11),*®3*° and then
hopping molecular dynamics algorithms. The important rolepropagation continues using the new quantum state. The val-
of quantum coherence can be demonstrated in two such ales of the complex coefficients;; , are retained throughout
gorithms: the “fewest switches” or MDETmolecular dy-  the propagation, so that memory of the coupling between
namics with electronic transitionsalgorithm>®** and the  states at different times is preserved: The entire trajectory is
stationary phase surface hopping approgcit propagated completely coherently. To account for decoher-
In the fewest switches algorithm, pioneered by THily ence then, it would be necessary to evaluate an entire swarm
and further developed by Coker and co-workemmplex  of trajectories from the sarelassical initial condition. Dif-
coefficients are used to describe tfgenerally mixed state  ferent random number sequences would produce different
quantum system for a given position of the classical coorditransition points in the different trajectories of the swarm.
nates. Thus, the mixed quantum state at a given time can kince the classical dynamics between trajectories with tran-

described in terms of the adiabatic basis, sitions in different places will generally diverge, the interfer-
ence between all the trajectories in the swarm, when summed
| i ()= 2 ci(t)|a;). (99  together, would provide a natural description of quantum de-
|

coherence for the initial time stég?
Representing the complex coefficients in density matrix no-  This natural description of quantum decoherence, how-
tation, pijzcicu* and substituting Eq(9) into the time- ever, comes at a computational price. To obtain ensemble
dependent Schdinger equation provides equations of mo- properties of a mixed quantum-classical system, a thermal
tion for coherent propagation of the complex coefficientsdistribution of initial configurations must be chosen, and then
under the influence of the bath a swarm of trajectories run for each initial condition. The
properties of the system as a whole consist of ensemble av-
=> (pijR-dix—pikR-di) —i (E;—E;)p;;, (10)  €rages of the sums of the swarm of trajectories associated
k with each initial condition. Especially for cases where the
coupling is weak or the decoherence time is short, one ex-
pects that a very large swarm of trajectories would be re-
quired from each initial condition to correctly damp out
di=(a;| Vrlay), (1) memory of the nonadiabatic transition amplitudes between

where the gradient is taken with respect to the classical cddifferent times. Moreover, it is not clear priori how many
ordinates. Propagation of the classical particles is performeHajectories would be required for a given initial condition to

J
Epij

where the nonadiabatic coupling vector between statesl
k is given by

adiabatically using the Hellmann—Feynman force ensure that coherence has been properly damped. A new
0 nonadiabatic method recently developed by two of us recasts
FQ'(R)=—(ai|VrH| ), (12 the fewest switches algorithm in a formalism where a single
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trajectory can be propagated with smooth damping of quarthe classical dynamics are propagated under the influence of
tum coherence as long as the decoherence time is known the mixed quantum state rather than adiabatically. The algo-
advance. rithm utilizes an expression for the quantum force developed

In the stationary phase surface hopping approach, pioby Pechuka® using the stationary phase approximation in a
neered by Webstegt al*'* and generalized recently to in- path integral representation of the quantum propagator
clude approximate eigenstates by Murphrey and RoSsky, U(t,t,),

—Re[{a;(R())[U(t,t") VRH[R(D)JU(t" to) | ai(R(to)))]
(@j(R(1))|U(t,to)] ai(R(to))))

Fo(t')= (14)

This expression for the force is then combined with the surfudes along consecutive time steps can lead to an overall
face hopping algorithm of Tully and Prestbhwhere the electronic transition probability which depends directly on
hopping probabilities are computed from the magnitudes othe coherence time. Thus nonadiabatic transition rates and
the overlap of the initial adiabatic state projected onto thedynamical quantities computed with this algorithm will in
possible final adiabatic states general be a function of the chosen decoherence time.
Clearly, for both the stationary phase surface hopping and
Tij=({a;(RINU (L to)|i(Rito))). 19 fewest switches algorithms, an independent method for esti-
The Pechukas force expression, Ety), also conserves en- Mmating the quantum decoherence time is required. We pro-
ergy and angular momentum during an electronic transitioPose such a method in the following section.
(i#]); the force on the classical particles reflects the smooth
evolution_ of _the initial adiabatic state into a quantum _mixedm_ ESTIMATING QUANTUM DECOHERENCE TIMES
state which is eventually resolved into a new adiabatic state
at the end of the time step. In order to estimate the quantum decoherence time for
To produce nonadiabatic dynamics with the stationaryeither the stationary phase surface hopping or fewest
phase surface hopping algorithm, it must be noted that Ecgwitches molecular dynamics simulations, it is necessary to
(14) is nonlocal in time: The force acting on the classicalmake some type of semiclassical approximation for the
nuclei over the step timAt=t—t, depends on the adiabatic nuclear degrees of freedom. The approach we will take, fol-
wave functiongwhich in turn depend on the nuclear coordi- lowing that of Neria and Nitzaf,® relies on a semiclassical
nate$ at both the initial timet, and the final timet. The  approximation for calculating the nuclear wave function of
system generally begins in an adiabatic eigenstate, and tiibe bath. Since the bath wave function enters directly into the
classical dynamics are propagated under a linearized Hami@iolden rule expression for the nonadiabatic transition rate,
tonian to determine the approximate final adiabatic eigenEg. (6), the quantum coherence time can be determined sim-
states. The final adiabatic stgtés chosen by computing;; ~ ply from the decay of the nuclear functigkt).
from Eq.(15) and comparing to a random number. The value At the heart of the method is the estimation of the
of j thus determined is then used in Ef4), which is solved nuclear wave function of the solvent based on Heller’s fro-
self-consistently for the classical and quantum dynamicszen Gaussian approximatioffGA).** Heller showed that
This algorithm provides for complete quantum coherencgsaussian wave packets, centered on the positions of simu-
during the time step, with the selection of the final adiabatidated classical particles and propagated classically, can be
eigenstate at the end of each step. The transition probabilitiassed successfully to calculate many quantum properties of
computed over a given time step with the stationary phaseomplex systems. This approximation works well for short
surface hopping method are equivalent to those produced dymes when there is negligible spreading of the nuclear wave
the swarm of trajectories necessary in the fewest switchegackets. Since decoherence times in condensed phase sys-
approach. Like the fewest switches algorithm, the complexems are on the order of a few femtosecorids will be
amplitudes for the transition probabiliies from E@L5  demonstrated for the case of the hydrated electron in the next
could then be retained and added over an arbitrary number sction, we expect this will be an excellent approximation.
subsequent time steps, preserving coherence. The typical usbe nuclear wave function of the bath, then, is given by the
of the stationary phase surface hopping algorithm, howeveguperposition of the frozen Gaussia@&\ (x,p;t), centered
includes dropping the complex phases at the end of eachn the individual nuclei and propagated on electronic surface
time step to provide for natural decoherence with a singlei,7_9
nonadiabatic trajectory?1° i
The chief concern when employing the stationary phase  (R|I(RV(t)))=]] Gg)(x,p;t)exp{g S<‘>[R<i)(t)]},
surface hopping algorithm lies in the choice of the quantum n
decoherence time. As will be demonstrated in the next sec-
tion, complex interferences between the transition ampliwhere

(16)
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| ¥4 N (o2 tion, in accord with the original use of frozen Gaussians.
?) ex;{— > (Xn=Xp (1)) This type of approximation can describe condensed phase
dynamical properties for a surprisingly long period of time
(certainly longer than the decoherence time of interest, dis-
' 17 cussed beloyy as demonstrated in the rapidly growing litera-
. : : . ] » ture devoted to instantaneous normal mgléM) analysis
RO = (1) X (1)}, andx{(t) is the position of the ot ciassical liquid$? In general, the Gaussian overlap inte-
nth nuclei,p{’(t) is the momentum of thath nuclei anda, gral in Eq.(19) can be done analyticafly
is the Gaussian width of thath nuclei (discussed further
below). The phase evolution of the total wave function is L L
given by the classical actior§(t), of the system during <1;[ Gl (x %);t)I;[ Gy(xy, ﬂ)it)>
propagation along staiewhich is given explicitly by

GI(x,p;t)=

i_ Mty (x. —x)
+ 5 P () (6= X (1)

(i) 2 a, i
gn[R(i)(t)]:J;thn: % :1;[ exr{—z (Xﬁ”(t)—xg)(t))z}
—(IRPO)HOIRD(D). (18 xexp{— 4a1ﬁ2 (pﬁ”(t)—p&”(t))ﬂ

The second term in E@18) is simply the potential energy of
the system on surface evaluated for the position of the
classical coordinates at tinte Since the frozen Gaussians
are propagated classically, the quantum wave function of the )
bath is directly available from the semiclassical descriptionVhere we have neglected the overlap of Gaussians represent-
of the entire system. Armed with E4L6) and Eq.(18), the NG dlﬁerent nucIe_|(n¢m) between the two surfaces. The.
nonadiabatic transition rate can be calculated using(€q. short time expansion for the nuclear degrees of freedom is
This was the approach used by Neria and Nitzan, who cal@Ven by

culated the nuclear overlap integral from Eg) as’®

J(t)~<Tm[ CEUCI I | CREEE gi>;t>>

. (20

X exr{z'—ﬁ (i () =% (1) - (P () + PR (1))

- ; 1 1 )
X0 =x(0)+ G- PO+ Zu= FP(O) T+ (),

_ _ _ Fio
o =Ry R O g TR ),
19 -

by running two quantum adiabatic simulations from the samen Eq. (21), F{’(0)=F{), (0)+F¢,q(0), the sum of the
initial condition, one starting on the initial electronic surface quantum and the classical forces acting onritrenucleus at
and one starting on the final electronic surface. The drawtime zero, Wherng)n(O) is the adiabatic(Hellmann—
back to this technique is that it requires running many costIM:eynma,). quantum force acting on nuclensvhen the quan-
adiabatic quantum molecular dynamics trajectofte® tra-  tum state is on surfadeas given by Eq(12). Also needed is
jectories per configuration in the ensemb#mply to esti-  a short time expansion for the potential energy term in the

mate the overall rate at the level of first order perturbatiorclassical action, Eq18), which enters into phase of the total
theory [Eq. (6)]. This effort is spent on trajectories which nuclear wave function

provide no dynamical information about the system. Instead,

we can use Eq19) as a starting point to provide an estimate ~ V(R(t))=(1(RV(t))[H;(t)[I(R1V(t)))

of the decoherence time that can then be used in either the ()(0))

stationary phase surface hopping or fewest switches molecu- ~V(i)(R(o))HE Pn FO0) 4o,

lar dynamics algorithms. Both algorithms furnish the dy- n M, A

namical information of interest, and further, the stationary (22)

phase surface hopping approach utilizes the full quantum

propagator(within the stationary phase approximatiopo = where we have used the chain rule for differentiation to get

that the assumption of linear coupling inherent in first orderthe second term in the expansion.

perturbation theory is not an issue. In general,J(t) is a complex-valued function of time.
The computational effort involved in E419), however,  Utilizing the Condon approximation, where we assume that

is formidable for the sole purpose of providing a single de-the value ofJ(t) is uncorrelated with the instantaneous value

coherence time for use in another algorithm. Since the FGAf the nonadiabatic coupling vector, we can separate the con-

is an inherently short time approximation, a reasonable aptribution of J(t) from the overall golden rule expression, Eq.

proach to reducing the computational effort in estimating thg6). Since the imaginary part af(t) is odd with respect to

decoherence time is to expand the classical nuclear positioriene, we need only consider the real part &ft) in our

and momenta to second order in time. This is equivalent t@stimate of the quantum decoherence time and its effect on

making a local harmonic approximation for the classical mo-the non-adiabatic transition rate. We also note that the golden

xexp[,ii— (SURV(H)]-SIRI(W)])
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rule expression requires that the trajectories used to detetwo quantum states, generalization to an arbitrary number of
mine the classical coordinates propagated on the two elegairs of states is completely straightforward. We offer an
tronic surfaces start from the same set of initial condiffons example of the utility of this new method for estimating the

xW(0)=x(0), p’(0)=py(0), which also means that the decoherence time in the following section.

initial classical forces acting on nucleansare the same on

the two surfaces. Using this information, substituting Egs.
(20—(22) into Eq. (19), and dropping terms oﬁ(t3) and IV. QUANTUM DECOHERENCE AND THE HYDRATED

higher, we have the desired short-time approximation for th&LECTRON
decay of quantum coherence The prototypical system for studying condensed phase
1 nonadiabatic dynamics has been the hydrated electron. Be-
ReJ(t)]= ex;{ -> 5 (Fg>n(o) - Fg>n(o))2t2 cause it has only one quantuelectroni¢ degree of freedom
o 4anh ' ' which is strongly coupled with the nuclear motions of the

(i) _ v surrounding bath, the hydrated electron provides an excellent
xcog (VI(R(0) =V (R(0))VA]. (29 testing ground for theoretical mod€l&1%1323-2°The |arge
The exponential term in Eq23) arises from the divergence optical cross section of the hydrated electron also makes it
in nuclear overlap for propagation on the two different sur-amenable to spectroscopic investigatidr® With the ad-
faces. The time derivative of the quantum force in the shortzent of new femtosecond laser techniques and the develop-
time expansion for the momentupkqg. (21)] and thex-p ment of nonadiabatic dynamical algorithms such as those
terms from Eq(20) both come in at higher order thafy and  described above, the hydrated electron has provided the first
hence do not appear in E@®3). Further, because the initial condensed system where nonadiabatic theory and experiment
positions and momenta are the same on the two surfaces, thave successfully convergéd.
leading term in the divergence of the overlap comes in only Interest in the nonadiabatic dynamics of the hydrated
as the difference in the quantum forces evaluated on the twelectron was originally spurred by femtosecond experiments
adiabatic surfaces. The cosine term in E2@) arises from  studying the formation of equilibrium hydrated electrons fol-
the classical action; the term which survives depends only ofowing multiphoton ionization of neat watér* While the
the potential difference between the two states since the inmechanism of electron production in these experiments is
tial classical kinetic energy is the same on both surfacesot fully understood®it is clear that the formation of the
Finally, although the nuclear masses do not appear explicithgquilibrium species takes place by an essentially two-state
in Eq. (23), they will play an implicit role in decoherence process. The kinetic pictu#&that emerged from the combi-
through the choice of the Gaussian widtlss,. Thus the nation of these experimemt$>3adiabatic simulation’ and
decoherence time as given by the decayl@) in Eq. (23)  nonadiabatic calculatioi$%® points to trapping of the elec-
depends upon the initial width of the Gaussians. As is cleatron in the lowest excited statsometimes referred to as the
from Eq. (23), the solvent nuclear dynamics enters only“wet” electron) followed by nonadiabatic relaxation to the
through the force difference. It is also interesting to note thaground statgthe equilibrium “solvated” electron Forma-
it is the dispersion of thenomentumcomponents of the tion of the excited state electron from the initially produced
nuclear wave function which governs the initial decay ofspecies was found to take 110—243433 The nonadiabatic
J(t) rather than the spatial components. relaxation time for the electron determined in these experi-
Our short time approximation foi(t) in Eq. (23), de- ments is 250-500 f&32 Investigations of this process in
pends solely on zero time quantities, a substantial advantagkeuterated water have shown that the isotope effect on the
over a time dependent expression. For a given nuclear comonadiabatic transition rate is at most a few peréént.
figuration, only the potential energy difference of the quan-  More recent experiments® and quantum simu-
tum system and the difference in the adiabatic quantum forckations®?42>2’have investigated the nonadiabatic dynamics
on the two surfaces play a role in determining the decoheref the hydrated electron by photoexciting the equilibrium
ence time. Sincd(t) is defined for a single configuration, it ground state species and monitoring the subsequent solvation
can be computed on the fly during nonadiabatic dynamics tof the excited state and its internal conversion back to the
monitor the non-equilibrium evolution of quantum ground state. Upon photoexcitation, the quantum energy gap
decoherencé For the equilibrium ensemble case, initial of the hydrated electron starts at its equilibrium ground state
nuclear configurations can be generated from a single adiaralue and continuously decreases with time as the excited
batic mixed quantum-classical trajectory on the initial sur-state charge distribution is solvated. The nonadiabatic cou-
face or by Monte Carlo, with no need to run multiple trajec-pling between the two states increases as the gap becomes
tories for each member of the ensemble. In the commosmaller, leading to an increasing nonadiabatic transition rate
situation where the initial configurations are generated bywith time2* The excited state solvation time for the photo-
molecular dynamics, the potential energy difference is typi-excited electron is 250—-300 fs, and the nonadiabatic transi-
cally known and the Hellmann—Feynman force has alreadyion rate from the equilibrated excited state is on the order of
been computed on the occupied surface, so the only addi ps 1.2*° Experiments in BO show identical spectral dy-
tional computation necessary is determination of the quanramics, indicating little isotope effect on either the solvation
tum force on the final electronic surface. Although the for-dynamics or the nonadiabatic transition réftédere, we uti-
malism presented here considers decoherence between oflike nonadiabatic mixed quantum-classical molecular dynam-
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ics simulations to investigate the origins of quantum deco- 2 ~

herence in this prototypical condensed phase system. _ . S e
The simulation techniques we employ are identical to R I R Ground State

our earlier work studying both the relaxation of electrons g. !

photoinjected into neat watér’® as well as the present case © 1 -

of photoexcitation of equilibrium hydrated electroité® o Excited State

Briefly, the model consists of 200 classical SPC water mol- 5 0~5-1'/\V_,\/(\,\_,_//\A_

ecules with the addition of internal flexibil®y and one
guantum electron in a cubic cell of side 18.17dbrrespond- 0 20 40 60 80 100 120
ing to a solvent density of 0.997 g/jnith standard periodic Time (fs)
boundary conditions at room temperature. The electron—
water interactions were described with a pseudopotetitial, FIG. 1. Divergence of the ground state-excited state energy gap of the
and the equations of motion integrated using the Verlet algobydrated electron for trajectories propagating on the ground versus excited
ithm with a 1 fstime step in the microcanonical ensemfe. e polet) surces, s fom e sae il conuraton i e
The adiabatic eigenstates at each time step were comput@gh along the excited state produces little change in the quantum energy gap
via an efficient iterative and block Lanczos scheme utilizing(Ref. 43. The dashed line shows the rapid increase in the quantum energy
a 163 plane wave basi%% the lowest six eigenstates were 9ap as thg glectron propagates on the ground state surface, establishing its
. . . . new equilibrium.
computed during nonadiabatic molecular dynamics. Twenty
configurations in which the energy gap was resonant with the
experimental laser frequeréy®® were chosen from a 35 ps
equilibrated ground state run as the starting points for non-  Using the method outlined in the previous section, we
equilibrium excited state trajectories. The solvation of thecan estimate the decay of quantum coherence for the hy-
newly formed excited state, nonadiabatic transition times fofrated electron from Eq(23) with information available
the 20 trajectories, and a comparison of ultrafast spectrodrom the excited state simulations. For the present example,
copy computed from these simulations to experiment are afihe initial statei is the equilibrium excited state of the hy-
available in the literaturé" > A detailed microscopic analy- drated electron, and the final statés the ground state of the
sis of the nonadiabatic coupling and energy disposal followelectron. For the widths of the frozen Gaussians, we chose
ing the _ internal conversion for these simulations is 6M KT
forthcoming™ ah=—2
Quantum coherence in these simulations was maintained
utilizing the stationary phase surface hopping nonadiabatievhich results from rigorous analysis of the nonadiabatic
dynamics algorithm of Webstest al, described abovE'*  transition rate between displaced harmonic oscillators in the
In these earlier studies of the hydrated electron, we chose taigh temperature limif;? and also allows for direct compari-
drop coherence at the end of each 1 fs time §t@pother  son to the earlier calculations of Neria and NitZ&To com-
words, we do not utilize the complex phases of the transitiorpute the equilibrium quantum decoherence which modulates
amplitudes,T;; [Eqg. (15)], over more than one time stgp  the nonadiabatic transition from the excited state, we take an
This choice, though arbitrary, was based on expectations thansemble average of E@R3). Assuming that the excited
the decoherence time for this system should be on the ordatate was equilibrated at times past 1 ps, we chose 20 con-
of 1 fs. This choice is equivalent to having a rectangularfigurations at 25-50 fs intervals from each of our 5 longest
decay of the nuclear functiod(t) [Eq. (23)]: J(t) for this  trajectories for a total of 100 configurations. Since we had
algorithm starts at 1 and stays there for 1 fs, and then inalready computed the eigenenergies and the excited state
stantly drops to zero for times greater than 1 fs. A modifiedHellmann—Feynman forces on the classical particles for all
version of this algorithm which chooses coherence intervalthese configurations, we need only use the eigenfunctions
based on instantaneous values for the quantum decoherenmemputed previously to determine the Hellmann—Feynman
time will allow for dynamics with a more realistic decay of forces along the ground stdtéq. (12)] to obtain an estimate
quantum coherenc@. The rapid divergence of the nuclear of J(t) from Eq. (23).
positions on the two different surfacénd hence, choice of The results of this calculation are shown as the solid
a short coherence timés illustrated conceptually by Fig. 1. curve in Fig. 2. For the hydrated electron in the short time
This figure shows the quantum energy gap for the hydratedpproximation, the coherence decays in a roughly Gaussian
electron starting from a configuration equilibrated on themanner, and a Gaussian fit to the decay has a variance of 3.1
electronic excited state. The solid curve follows the energyfs. Another estimate of the decoherence time is found in the
gap for continued propagation on the equilibrium excitedarea under the curve, which for this example is 2.8 fs. This
surface, while the dashed curve shows the gap starting fromesult is in good agreement with previous calculations using
the same initial configuration but propagating along thea different model for the hydrated electrbfiand demon-
ground state surface. Clearly the nuclear configurations givstratesa posteriorijustification for the hypothesis of &1 fs
ing rise to the quantum energy gap on the different surfacesoherence time in the earlier nonequilibrium simulations. We
must diverge rapidly. Thus the nonadiabatic coupling for thisalso note that the rapid decoherence of this system provides
system must be tempered by a short coherence time. a posteriori justification for the short time approximations

(24)
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the difference in Pauli repulsion forces. These contributions,

R, 7 taken together, can be large enough to overcome the mass
N — I . . .
081 \ux, R weighting which favors contributions from H atoms.
— %\ over? The dotted curve in Fig. 2 shows the portion of the co-
S 0.6+ N J phase(t) .
= “, herence decay due to the ensemble average of the cosine
@ 0.41 N e, term in Eq.(23)
02t N\ AN Jphasét) =(cog (V(R(0)) = VI(R(0)t/A]).  (26)
0 e This portion of the total coherence, due to phase interfer-
0 5 10 15 20

ences in the nuclear part of the total wave function associated
with the two electronic surfaces, accounts for a significant
FIG. 2. The decay of quantum coherence for the hydrated electron in thgortIon of the total deQOh.erence of the system. FOI’ the hy_
short time approximation. The solid curve shows the full decay of coherencgrated eleCtrom the d'St”_bUt'On of 'r'"t'al potential energy
due to divergent nuclear overlap and phases on the two different surfacedifferences is lar® leading to cosine terms from the
[Eq. (23)]. The dotted curve shows the portion of the coherence decay dugclear phases of a wide Variety of frequencies which de-

solely to the difference in nuclear phassq. (24)]. The dashed curve gy otively interfere. We also note that the product of the
presents the contribution of the decaying overlap of the diverging nuclear

positions to the decay of quantum coherefig. (25)]. The product of the INdividually averaged overlap and phase terms, E2f8.and
phase and overlap terms does not exactly reproduce the full conerence decé®6), does not exactly yield the total coherence decay calcu-

due to correlation between them. lated from Eq.(23). This indicates a definite correlation be-
tween the overlap and phase portions of the nuclear wave
function. Such correlation is perhaps not that surprising:

[Egs.(21) and(22)] inherent in Eq(23). Since the computed Configuratipns with larger potential energy differences are
decoherence time is on the order of a few femtoseconds, E&1_Iso more likely to have larger differences in quantum forces
(23) should prove to be an excellent approximation. The im-2étween the two surfaces.

portance of the coherence decay in the overall rate is evident Finally, we note that the decay of quantum coherence
from Eq.(6): J(t) decays much more quickly than the auto- presented in Fig. 2 is calculated for the hydrated electron at

correlation of the nonadiabatic coupliiThe origins of the ~ €auilibrium in its excited state. Since the quantum energy

coherence decay presented in Fig. 2 can be found in a d&@P evolves with time following photoexcitation due to sol-

tailed examination of Eq(23). The dashed curve in Fig. 2 vation, the decay of quantum coherence will likely also

shows the ensemble average of only the Gaussian term in E volve during the course of a nonequilibrium trajectory. Thus

(23), namely, ynamical changes in both the nonadiabatic coupling and the

guantum decoherence time will affect the nonadiabatic tran-
(Fgin(0)—Fg)(0))
Joverlap(t): < eXF{ _En: - 4a 2 - t?)).
n

Time (fs)

sition rate during solvation of the newly created excited
state. For now, we will concentrate solely on the nonadia-
batic transition rate from the equilibrated excited state; the

(25 effects of evolving decoherence on condensed phase nona-
diabatic dynamics will be explored elsewhére.

This portion of the decoherence, due to the decay in overlap

f the nuclear wave function on the different surf
more slouly than he total coherence incicaing the impor.(, JECCHERENCE AND THE [SOTOPE EFFECT ON

. NONADIABATIC TRANSITION RATES

tance also of the phase of the nuclear wave func{see
below). We find that the sum in the exponential is typically One of the largest puzzles concerning the nonadiabatic
dominated by only 5 to 10 nuclei which are the closest to thalynamics of the hydrated electron has been the surprising
bulk of the electronic charge densf.This makes sense lack of a sizable isotope effect on the radiationless transition
from the definition of the Hellmann—Feynman force, Eq.rate3%** A quick glance at Eq(6) shows that the nuclear
(12): The largest difference in quantum force between thevelocities play a direct role in determination of the nonadia-
two surfaces will be for nuclei in positions where the chargebatic transition rate. Since the fastest nuclear velocities in
density, is large on one surface and small on the other. WB,0 are classically2 times slower than those in,B while
find that despite the appearance of the nuclear mass in ttthe other factorgthe electron—water interaction potential,
Gaussian widtHEq. (24)], not only hydrogen(deuterium  the quantum force on the nuclei, gtcemain the same be-
but also occasionally oxygen nuclei contribute significantlytween the two solvents, the expectation is that radiationless
to the sum representing the decay of the nuclear ovéHgp transition rates should be roughly half as large sOOrom-
(25)]. This is due to the fact that the force difference betweerpared to HO. Indeed, mixed quantum-classical simulations
adiabatic energy surfaces for O nuclei can sometimes bkave suggested isotope effects of factors of 2—4 for the elec-
larger than that for H nuclei. This larger force differencetronic transition rate in this systefif:** Experiments, how-
relative to the H nuclei results from the larger charge on theever, have found at most a modest difference in the nonadia-
O atoms which increases the difference in Coulomb forceshatic transition rate for electrons photoinjected intgOHvs
and from the larger O atom electron density which increase®,0,** and no isotopic differences have been observed in the
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H,O). We note that the results in this figure are not in good
5 agreement with the previous work of Neria and NitZ&n,
who found almost identical coherence decays for the electron
\ ---- DO in H,O and DO.*® Although we cannot be sure, the differ-
N ence may reflect the result of statistical fluctuations in Neria
\ and Nitzan’s data. To evaluate the nonadiabatic transition
. rate, Neria and Nitzan utilized E@6) which requires run-
s ning trajectories on both electronic surfaces. Since such tra-
00 : m === jectories are costly, they limited their ensemble to only 15
Time (fs) examples:® With our short time approximation, we were
able to easily include 100 examples in the determination of
FIG. 3. The isotope effect on quantum decoherence. The solid line showthe coherence decay. When we mimicked their calculation by
the full decay of quantum coherence for the hydrated eledtfan (23], selecting different subsets of only 15 examples for the en-
same as the solid line in Fig. 2. The dashed line shows the full decay of .
quantum coherence for the solvated electron p©DThe isotope effect semble average, we found coherence decays that varied by
slows the coherence decay in heavy watert50%: see the text for details. hearly a factor of 3. This suggests that insufficient statistics
may have played a role in Neria and Nitzan’s result of iden-
tical coherence decays for the two fluids. We note that, cor-
respondingly, Ref. 8 reports a substantially different isotope
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spectroscopic dynamics for photoexcited equilibrium

electrons® In this section, we explore the possible role of effecthth?n we repr(])rt below.. in h d
guantum coherence in determining the magnitude of the The longer coherence time in heavy water compared to

nonadiabatic transition rate for equilibrium excited statellght water arises predominantly from the difference in mass
electrons. We find that even though the nonadiabatic cod! the choice of the Gaussian wid&q. (24)]. For classical
pling is smaller in RO than HO, a slower decay of quantum H20 and DO, the probability of a given nuclear configura-
decoherence in fD allows this smaller coupling to add co- tion is the same. Static ensemble properties for the two fluids
herently for a longer time than inJ@, leading to estimated should be identical since the ensembles contain identical
net electronic transition rates which are comparable in théuclear configurations with equal statistical weigtitSince
two solvents. the electronic Hamiltonian for the solvated electron is iden-
The simulation techniques we have employed to studyical for both heavy and light water, the static ensemble av-
the solvated electron in JO are essentially identical to those eraged potential energy difference and the difference in
in H,0, and are described in more detail elsewHéiriefly, Hellmann—Feynman forces on the two surfaces will also be
the only differences in simulating the electron in heavy ver-identical for the two fluids. Thus the only differences in the
sus light water come in changing the mass of the proton frongvaluation of the coherence decay for the two fluids via Eq.
1 to 2 amu, and the slight change in solvent density to accu?23) is in the mass term that enters through the Gaussian
rately reflect the experimental density of@at room tem-  idth in Eq. (24). Since the nuclear overlap part of the co-
perature. In performing these,O simulations, carried out perence decay depends on the sum over nuclei, the mass
prior to the remainder of the present study, we made th@pange leads to the net slower decay of coherence@B
choice of a quantum qoherence time in the stationary phaqqzol In fact, for the purposes of evaluatindt) for the
surface hopping algorithm of 1 fs, the same as fgOHAS 5y ateq electron in BD, the HO simulations would suffice.
we will see below, the estimated coherence time YD The different coherence decay times in the two solvents

[ I -
roughly 50% longer than_ that in . One of the_ conse g{ay a direct role in determining the isotope effect on the
guences of the hypothesis of equal coherence times is th . . s LT
overall nonadiabatic transition rate. In simplified terms, to

nonadiabatic trajectories remain on the excited state Signiﬁdetermine the nonadiabatic transition rate before quantum
cantly longer in BO, bringing to light a slower component q

of the solvation response on thel.2 ps time scale that was coherence has decayed, nonadiabatic transaimplitudes
not evident in our earlier wof@25on H,0 due to its shorter should be added; after the decoherence interval, memory of
excited state lifetimé* For consistency in estimating the co- (€ complex phases is lost and nonadiabatic transjifob-

herence decay by use of E@3), we chose 100 excited state abilities should be added. This view can be used to estimate

configurations from the BD trajectories at the same times nonradiative transition rates in limiting cases. During the
(=1 ps that we used for the © trajectories in the produc- COurse of the nonadiabatic simulations described above, the

tion of Fig. 2. probability of making an electronic transition at a given time

Figure 3 shows a comparison of the nuclear decay funcstep was strictly determined by the square of the appropriate
tion J(t) for the solvated electron in J@ (solid curve, same nonadiabatic transition amplitude, a direct consequence of
as the solid curve in Fig.)2and in D,O (dashed curye the choice to keep coherence for only one time step. Thus the
calculated from Eqgs(23) and (24). The coherence decay in nonadiabatic transition rate, or probability of making the
D,0 is qualitatively similar to that in kD, only for D,O the  transition per unit time in this “incoherent” limit, is given by
approximate Gaussian decay time~ig.6 fs(versus~3.1 fs  the sum of the squares of the nonadiabatic transition ampli-
for H,0) and the area under the curve is 4.1\fs 2.8 fs for  tudes
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as a function of the coherence time for the solvated electron

& 1 in both HO and DO. The dotted and dot—dashed lines show
O Incoherent: DO | the average probability per unit time for the electron to re-
% -------------------------------- e main on the excited stgte in Ilght and. heavy water, respec-
s 0.9975 + 2 tively, as computed during the simulations kvi 1 fsquan-

QQ: . tum coherence timgP,,(At), Eq. (27)]. These probabilities

= KN Coherent: D,O are averaged over 3000 starting configurations drawn from
2 0995 N, the 5 longest trajectories at times past 1 ps. The average
5 "\ probability per unit time of leaving the excited state for the
0 N electron in QO is approximately 1.2 parts per thousand
= 09925 1 \ while that for the hydrated electron is roughly half again as
E N large. For a 1 fdime step, these average probabilities corre-
& - Coherent: Hy0 spond to lifetimes 0f=550 fs in HO and~850 fs in D,O.

"t The magnitudes of these rates agree reasonably with the rates
b2 3 4 5 6 7 8 9 10 obtained from fits to the actual population decays in the
Coherence Time (fs) simulations?’ and the~2:1 simulated isotope effect between

D,0 and HO™ is adequately reproduced. As discussed else-
FIG. 4. Effect of quantum decoherence on the survival probability per Unitwhere, non-adiabatic transitions usua”y occur from those
time of the hydrated electron. The dashed and dot—dashed lines show the .. . . . .
incoherent limit[Eq. (27)] to remain in the excited state for the solvated Q:onﬂgu_rg_nons with somewnhat hlgher than average tre_mSItlon
electron in light and heavy water, respectively. Since the average probabiligpfobabilities or lower than average survival probabilifies.
for making a transition is constant, these incoherent sums do not changEhese special configurations, however, occur with a low
with time. The dashed and solid curves show the corresponding cohere@nough frequency that the average transition probability pro-
products of the nonadiabatic transition amplitudgs. (28)] in light and id bl timate of th ilibri lati
heavy water, respectively. The coherent and incoherent transition probabili\—/I es a reasonable estimate or the nonequiliorium popufation
ties are identical for 1 fs coherence time due to the simulation algorithm. dynamics.

The solid and dashed curves in Fig. 4 show the average
probability per unit time for remaining in the excited state
for the solvated electron in heavy and light water, respec-
tively, computed as a function of the coherence time
[P(7), Eq.(28)]. For a coherence time=1 fs, these curves
: . _ coincide exactly with those computed from Eg&7), as ex-

In Eq. (27), P;; (A1) is the probability per unit time of mak- pected. For coherence times longer than 1 fs, constructive

Ing a nqnad|abat|c transition petweeq Statas',dj_ averageq interference between the transition amplitudes at consecutive
over 7 time steps along a trajectory in the limit of keeping time steps leads to a significant lowering of the survival

COheT‘?”Ce forllonc;y oneAtlme steg‘ht(). gheET ;:onsecdutlk\:e probability per unit time—in other words, increasing the

transition amp |tu' es.T‘j( 1), are given by Eq(15), and the . quantum coherence time increases the likelihood for making
a_mgled bracke_ts mcﬁcate an ensemble average over starting,,n,iabatic transition. The magnitude and phase of the
times and trajectories. It coherence were maintained OV&fionadiabatic coupling in this system do not vary much on
s_everal ﬁpngecutlvelgr;"_ne stt)e(ﬁnAt), dthe corrr:plex ransl- - ihe time scale of a few femtoseconds, so that changes in the
tion amplitudes would first be summed over those time Steps,parance time result directly in changes in the electronic
allowing for interference, and then the square would be takeﬂansition rate as per EG6)

to determine the nonadiabatic transition probability Armed with the cohereﬁce decay times for bogorand

2> D,O from Fig. 3, we can make use of the coherence time

T

1
Pij<At>=E<E

Tij(At)
n=1

2>. (27

(28)  dependence of the nonadiabatic transition probabilities per
unit time displayed in Fig. 4 to provide a revised estimate of
In Eg. (28), Pj;(7) is the probability of making a nonadia- the isotope effect on the nonadiabatic transition rate. For
batic transition between statésandj per unit time where equal coherence decay times, as per the original ansatz in the
coherence is completely maintained ferconsecutive time simulations, the survival probabilities in Fig. 4 predict a
steps[Tj;(nAt) is the nonadiabatic transition amplitude at roughly 2:1 isotope effect in the nonadiabatic transition rate
the nth time step. Thus the complex transition amplitudes between DO and HO. This is a direct reflection of smaller
from the simulation can be used after the fact to determin@onadiabatic coupling in D due to smaller nuclear veloci-
what the nonadiabatic transition rate would have been ities. However, for a decoherence time i@ which is
guantum coherence were retained over an arbitrary numbeoughly 50% longer than that inJ® (we could chose either
of time steps. Comparison of nonadiabatic transition probthe~4.6 fs vs~3.1 fs Gaussian decay times or the 4.1 fs vs
abilities determined from Eq$27) and(28) as a function of 2.8 fs areas under the curves in Fig, the present method of
7 provides a direct measure of the influence of coherence oastimation yields nonadiabatic transition rates in the two sol-
nonadiabatic transition rates. vents which are identical to within 10%. For example, choos-
Figure 4 displays the nonadiabatic transition probabilitying the areas under thKt) curves as estimates of the deco-
for remaining in the equilibrium excited staf;,, computed herence times, we obtain predicted lifetimes for the

1 T
Pij(7)="— < 2 Tij(nAy
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equilibrium excited state of the solvated electron of 310 ancknowledge of the difference in quantum forces and the dif-
345 fs in HO and DO, respectively(cf. Fig. 4. This result  ference in potential energy between the two states involved
provides a microscopic explanation for the lack of isotopein the nonadiabatic transition, requiring only a single quan-
effect observed in the femtosecond experiments: The smalléum trajectory or a set of configurations generated by Monte
nonadiabatic coupling in D adds coherently for a longer Carlo. Application of this new method to the hydrated elec-
time than that in HO; the two opposing effects nearly cancel tron reveals that the decay of quantum coherence takes place
for this system, leading to a nonintuitively small isotopic because of destructive interference in the phases of the total
dependence of the nonadiabatic transition fatalthough  bath wave functions as well as in the decay of the nuclear
the absolute transition rate constants are difficult to predicoverlaps in the bath wave functions as the nuclear dynamics
from simulation®® Fig. 4 provides a clear demonstration that diverge on alternative surfaces.
qguantum decoherence plays a direct role in the electronic An important test of the effects of quantum decoherence
dynamics of this very important condensed phase chemican nonadiabatic dynamics is found in an examination of the
system. isotope effect on the internal conversion rate of the hydrated
electron. Ultrafast spectroscopic experiments studying both
the formation of ground state electrons following multipho-
ton ionization and the internal conversion dynamics of pho-
In summary, we have investigated the role of quantuntoexcited equilibrium ground state electrons find little or no
decoherence in condensed phase nonadiabatic chemical reasidence for an isotope effect in the nonadiabatic dynamics
tions. In mixed quantum-classical computer simulations, baef this systent’* The decay of quantum coherence for the
sic assumptions about the decoherence time produce diresplvated electron evaluated by the expression developed here
manifestations on the calculated nonadiabatic dynamics, arid found to be 50% longer in f® than in HO, predomi-
hence play an important role in understanding a wide varietynantly due to effects of the nuclear mass on the total wave
of chemical systems. The treatment of quantum coherendeinction of the bath. This difference in the decoherence time
can be formulated somewhat differently in the two types ofhas been shown to provide an explanation for the observed
nonadiabatic algorithms we explored. In Tully's fewestlack of isotope effect. Since the autocorrelation of the nona-
switches metho8? the complex phases of the nonadiabaticdiabatic coupling decays relatively slowly for this system,
transition amplitudes are retained at all time steps, so that thecreasing the decoherence time allows the coupling to add
dynamics of individual trajectories are completely coherentcoherently for longer times, leading to an increase in the
Decoherence can then treated by running a swarm of trajectonadiabatic transition rate. The longer decoherence time in
tories from the same initial condition, so that the amplitudedD,0 compared to KD balances the effect of the smaller
added between trajectories which underwent switches at difaonadiabatic coupling due to the smaller nuclear velocities.
ferent times can destructively interfere. In the stationaryAs a result, the net nonadiabatic transition rate in the two
phase surface hopping method of Websteal,”>* 1> mixed  solvents is nearly identical.
guantum classical dynamics are performed coherently for a This dependence of the nonadiabatic transition rate on
single time step using a semiclassical expression based dhe quantum decoherence time has important implications for
the stationary phase approximation for the quantum forcea variety of chemical reactions. There are many chemical
The complex transition amplitudes can then be added cohesystems in which a bath is coupled to a quantum coordinate
ently over any number of time steps, providing an arbitraryof interest: internal conversion and internal vibrational en-
decoherence time in a single trajectory. A recently developeergy redistribution in isolated moleculékere, the bath is
extension of the fewest switches algorithmill provide for ~ comprised of all the modes of the molecule but the one of
a smooth decay of quantum coherence, with the coherendeteres}; electronic energy transfer between molecules or
decay time used as an input parameter. Alternatively, modidifferent parts of the same molecule; and charge transfer re-
fication of the stationary phase surface hopping method usactions including proton and electron transfer. In these latter
ing the formalism outlined here will allow for computation examples, both the condensed environment and other modes
of the decoherence time on the fly during the course of an the molecules can act as the bath which couples the states
nonadiabatic trajector? together. The decay of quantum coherence, which depends
In the formalism of time-dependent perturbation theory,on the frequencies and populations of the bath modes
the nonadiabatic transition rate for a condensed phase systeroupled to any of the above systems, will determine the ex-
can be written as the integral of the autocorrelation of theent to which the nonadiabatic coupling can act to allow the
nonadiabatic coupling vector modulated by the decay othemical reaction to proceed. Changes in the decoherence
quantum coherendég. (6)].”8 By building a short time ap- time due to variations in temperature or isotopic substitution
proximation into a semiclassical golden rule method develcan thus have a substantial impact in nonadiabatic chemical
oped by Neria and Nitzan which utilizes frozen Gaussians dynamics; the decay of quantum coherence can determine
to approximate the nuclear wavefunction of the bdthye  the degree of adiabaticity for a chemical reaction.
developed a readily computable way to evaluate the desired Nowhere is the sensitivity of chemical reactions to the
value for the rate of the decay of quantum coherence in theegree of adiabaticity more evident than in electron transfer
condensed phad&q. (23)]. The method has the advantage reactions>! Since many important electron transfer reac-
that the decoherence time can be estimated simply frortions are highly nonadiabatic, small changes in the degree of
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