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simulation of multielectron mixed quantum and classical
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We introduce an efficient configuration interactié@l) method for the calculation of mixed
guantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given
realization of the classical degrees of freed@m., a solvenf the method uses a novel real-space
quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We
also introduce an approximation whereby the classical molecular dynamics is propagated for several
time steps on electronic potential energy surfaces generated using only a particufaotyant
subsetf the Cl basis states. By only updating the important-states subset periodically, we achieve
significant reductions in the computational cost of solving the multielectron quantum problem. We
test the real-space quadrature for the cases of two electrons confined in a cubic box with infinitely
repulsive walls and two electrons dissolved in liquid water that occupy a single cavity, so-called
hydrated dielectrons We then demonstrate how to perform mixed quantum and classical
nonadiabatic dynamics by combining these computational techniques with the mean-field with
surface hopping algorithm of Prezhdo and RosgkyChem. Phys107, 825(1997)]. Finally, we
illustrate the practicality of the approach to multielectron nonadiabatic dynamics by examining the
nonadiabatic relaxation dynamics of both spin singlet and spin triplet hydrated dielectrons following
excitation from the ground to the first excited state.2003 American Institute of Physics.
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I. INTRODUCTION superposition of adiabatic electronic states. Adiabatic meth-
The study of chemical and electronic dynamics in theOdS rely on the Born-Oppenheimer approximation to rigor-

condensed phase is dominated by simulation techniques R]usly separate the electronic motiqns from the nuclear. mo-
which some degrees of freedom are treated quantum mdiOns, and the nuclear dynamics is restricted to a single
chanically and the remainder are taken to obey classicdl'Sually ground stajeelectronic potential energy surface.
mechanicg. Such mixed quantum and classic@M/CM) Restricting dynamics to the ground state allows the potential
methods must be used because it is far too computationalgnerdy surface to be calculated for the full many-electron
expensive to solve the time-dependent Sdimger equation quantum system, WhICh is typlcally.done using density func-
for every electron and nucleus in a many-body systemtional theory, as in the Car—Parrinello apprododn the
Mixed QM/CM methods for electronic dynamics are feasibleOther hand, the restriction to the ground state precludes the
because the mass difference between electrons and nucfption of studying excited-state dynamics, so Born—
causes a separation of time scales between electronic affPPenheimer-based approaches are incapable of studying
nuclear degrees of freedom, so that electronic motions obefjhotochemical processes or processes such as exciton
Schralinger’s equation whereas nuclear degrees of freedorfﬁco_f’”binatiOﬁ or curve crossings in molecular reaction dy-
propagate according to other rules. The most common agamics.
proach has been to treat the nuclear dynamics classically, but In contrast, nonadiabatic methods take into account the
techniques that include some quantum effects in the nucled@ct that the electronic motions cannot be rigorously sepa-
motion, such as second-order quantized Hamiltoniafated from nuclear motions. Nuclear motions can cause the
dynamics’ semiclassical dynamicsGaussian wave packét, quantum-mechanical wave function to acquire amplitude on
or quantum-dressed classical mechanialso have been de- more than one adiabatic potential energy surface. Unfortu-
veloped. Although the quantum mechanics of nuclear dyhately, most implementations of nonadiabatic mixed
namics is certainly of great interest, here we are concerne@M/CM have been limited in the number of quantum me-
with the quantum treatment of the electronic degrees of freechanical degrees of freedom they treat. This is because nona-
dom, so without loss of generality we will consider the nu-diabatic dynamics requires the full many-electron wave func-
clei to obey classical mechanics. tion for both the ground and excited states. Thus, condensed
The most popular QM/CM dynamics methods can bephase systems studied with nonadiabatic dynamics, such as
divided into two main categories: one in which the dynam-solvated electron®;** proton transfet?*®charge-transfer-to-
ics is restricted to a single adiabatic electronic state and thsolvent (CTTS),**71® and donor-acceptor electron transfer
other in which the electronic wave function can evolve as azomplexes, typically are simulated with only a single quan-
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tum degree of freedorf This restriction to a single quantum ments of observables such as optical transition dipoles to be
degree of freedom is unfortunate because there are seve@mputed.
hints that one-electron treatments do not always properly de-  With the multielectron eigenstates determined by Cl, the
scribe the electronic structure of solvated systems. For exsolvent dynamics can be propagated using any of a myriad of
ample, Sheu and Rosskyhave simulated the nonadiabatic adiabati¢® or nonadiabatit>32!?"dynamical schemes. Be-
relaxation following CTTS excitation of iodide in water us- cause molecular dynamics simulations require evaluation of
ing only a single QM electron that interacted with the iodinemultielectron wave functions for thousands of configura-
core and solvent molecules through pseudopotentials. Howtions, to make the simulations practical we will also intro-
ever,ab initio calculations by Bradforth and Jungwitthre-  duce a trick to reduce the computational effort needed for
vealed a completely different structure for the energy levelsolving the multielectron Schdinger equation. The trick
of aqueous iodide than with the one-electron pseudopoteramounts to determining which single-electron product states
tial. In particular, Bradforth and Jungwirth observed only acontribute appreciably to the full multielectron eigenstates,
single bound CTTS excited state, in sharp contrast to thand then using only this subset of important states in the ClI
band of six states of mixed and d character found in the calculations, periodically updating the list of important
one-electron calculations. This suggests that the singlestates.
electron calculations underestimate the magnitude of the ex- To test our scheme, we will examine nonadiabatic relax-
change and Coulomb interactions for higher-lying excitedation dynamics in a two-electron condensed-phase system
states by as much as several eV. Thus, it is unclear exactlyonsisting of two electrons that occupy a single cavity in
what single-electron nonadiabatic dynamics can teach uléquid water, thehydrated dielectronThe hydrated dielectron
about the relaxation of real multielectron systems. serves as a useful test of our real-space Cl method because it
To address this gap in existing nonadiabatic simulatioris closely related to the well-studied case of the single hy-
methods, in this paper we introduce a new computationatirated electrofi-*2*-26The hydrated dielectron is also of
method to perform nonadiabatic dynamical simulations ofinterest because it contairmly electron—solvent interac-
multielectron systems. Our approach to multielectrontions, thus allowing for a detailed study of the interplay be-
QM/CM dynamics in the condensed phase is based on catween electron-electron and electron—solvent interactions
culating adiabatic multielectron wave functions for eachwithout complications that might arise from intramolecular
nuclear configuration using configuration interacti@). In  electronic structure. Thus, we will investigate a model sys-
practice, any CI calculation starts with solutions of thetem that maximizes the ability of theolventto modulate the
single-electron Schdinger equation, where the numerical two-electron wave function, subject only to those constraints
solution of Schrdinger’s equation requires the choice of imposed by the electron-electron interaction and spin statis-
some basis in which to expand trial solutions. For gas phastcs.
problems involving electron-molecule interactions, itis com-  In the results presented below for nonadiabatic relax-
mon to work with bases that explicitly acknowledge the un-ation by the hydrated dielectron, we will use Prezhdo and
derlying molecular geometry, for example, Slater orbitals orRossky’'s mean-field with surface hoppingMF/SH)
Gaussian basis set$.Condensed-phase problems, in con-approach! for nonadiabatic dynamics. This method lets the
trast, often lead to electronic states that are not closely assctassical degrees of freedom evolve according to Ehrenfest’s
ciated with just a single molecule. These can be delocalizetheorem, but also incorporates decoherence and nonadiabatic
“conduction-band-like” states, or they can be rather local-effects by letting the wave function evolve discontinuously,
ized states, residing mostly “between” solvent molecules,either by mean-field rescaling or via surface h¢gectronic
so-called solvent-supported states. Thus, to study multieled¢ransitions between different adiabatic electronic sjaiée
tron systems without biasing the problem, our choice of théhave chosen this nonadiabatic dynamics algorithm because
one-electron basis must be able to describe both solventf the ease with which it can be implemented for QM prob-
supported and on-molecule states. The most straightforwarleéms of any dimensionality.
choice of basis, and the one we adopt here, is to solve for the The rest of this paper is organized as follows. In Sec. Il
electronic wave functions on a grid. This approach avoidswe briefly review the Cl method and introduce the aforemen-
bias and is guaranteed to converge as the grid density ioned real-space quadrature for evaluation of the Coulomb
increased. and exchange integrals. We then test this quadrature for the
Once the single-electron wave functions have been decase of two electrons confined to a cubic box and examine
termined on a grid, the next step of a Cl calculation is tothe convergence of our real-space Cl method for a hydrated
evaluate the Coulomb and exchange interactions between adielectron in a single configuration of liquid water. Section
tisymmetrized products of the single-electron states. To calHl shows how to use the Cl method for molecular dynamics
culate these electron-electron interactions using grid-baseahd introduces the idea of saving computational effort by
single-electron wave functions, we will introduce a new real-using only an “important” subset of the two-electron product
space quadrature that converts the six-dimensional integrdasis for the dynamics, with occasional updates of the
tions into rapidly convergent double summations over theémportant-states subset. In Sec. IV we apply our new meth-
grid points. Once the electron-electron interactions are detends to the condensed-phase dynamics problem of the dielec-
mined, the CI calculation gives thgave functiondor the  tron in liquid water, showing examples of nonadiabatic
ground and excited states of the multielectron system, nd¥IF/SH dynamics for both singlet- and triplet-paired dielec-
just the charge densities of these states, allowing matrix eld@rons. For completeness, we include an Appendix with a dis-
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cussion of the details of how to implement the MF/SH algo-  The remaining steps in the CI calculation proceed as
rithm with Cl wave functions. We conclude in Sec. V with a follows. Once we have foundl single-electron states, we
discussion of the full multielectron, nonadiabatic, mixedwrite the two-electron eigenstates as linear combinations of
QM/CM method and some thoughts on future directions. product basis states,

|\P>i:2 Cnm|nm>i- (5
n,m
Il. MANY-ELECTRON WAVE o . o
EFUNCTIONS USING REAL-SPACE The time-independent Schiimger equation implies that
CONFIGURATION INTERACTION
A. Review of the configuration-interaction method ;ﬂ Com(H1t H2+V12)||’1m>::|5%1 CamNM)-,  (6)

The CI method(in principle) allows the exact construc- from which it is easily seen that the eigenvalyés} and

tion of the eigenstates of a system of interacting electronsexpansion coefficient$c!, } are given by the eigenvalues
This technique is well knowf, but in order to fix our nota-  gnq eigenvectors of the&l(N+1)/2xN(N=+1)/2 Hamil-

tion for the rest of this paper, we first briefly review the
method.

Configuration interaction calculations solve Sahro
inger’s equation foM electrons by first finding approximate
single-electron eigenstates and then constructing the interai
tion potential in a basis of appropriately antisymmetrize_d (A +Hy)nm). = (en+em)|nm). 7)
product states. The so-called “singles and doubles” prescrip- o
tion reduces the problem to just two electrons, with theSO thatH;+H; is diagonal in this basis. The interaction, on
“noninteracting” basis states determined self-consistently s¢he other hand, is not diagonal, and its matrix elements are
as to take into account the interactions with the remaining e2

zf drlf drz(—>
iz

tonian matrix €1,+H,+V,,) (for notational convenience
we have supressed the index on thec,,).
The antisymmetrized product statgsm). are eigen-

states ofH;+H,,

M—2 electrons. For only two electrons, the exact one-.(n'm’|Vyjnm)..
electron states are used to construct the bass no self-

consistent calculation is needeand the single and double XL () (T ) (1 2) (T 2)
excitations form a complete basis. Thus, for the two-electron
problem, “Cl with singles and doubles” is equivalent to full, * zp’r;,(rl)zpn(rl)w:,(rz) Um(ra)t, (8

multireference CI. )
Consider the Hamiltonian for two interacting electrons, +<n,n,|vlz|nm>+=‘f2f df1J dr2<—)

r
Hiyp=H1+Ho+ Vs, (1 . 12*
X{n (r ) n(r) i (1) m(r2)},  (9)

where the subscripts indicate which elect®)rthe operator
acts uporf® The operatorsd; andH, consist of the kinetic

energy and the external potential enefgyg., from a sol- . e?
. . ! ’ —
vent operators for each electron, and the interaction between(n'n |V12|nn>+—f dflf dr, r—lz

the electrons is a Coulomb repulsith,

and

2 X{Yr (1) Pn(r) W (1) da(r)}. (10)

- e
(ri.ra|Vagdry,ro) = (f_lz) S(ri—ry)d(ry—ry), (2 The first term in Eq(8) is called the Coulomb integral, while
the second=) term is called the exchange integral; by con-

where ry,=|r;—r,|. Let us denote the single-electron vention, we take Eqg9) and(10) to contribute half of their
eigenenergies and eigenstatesigfandH, by €, and|n) [or  value to the Coulomb energy and the other half to the ex-
(riny=4,(r)], respectively. A two-electron state can be ex- change energythis is consistent with the division typically
panded in terms of appropriately antisymmetrized productsnade in, e.g., Hartree—Fock calculatiths
of single-electron state@n a direct-product Hilbert spage Equationg6)—(10) must be solved to determine the two-
electron eigenstates. The numerical bottleneck in any CI cal-

[nm).. =(Imm)=[m)[m)v2 - (m>n) ©) culation lies in evaluating the Coulomb and exchange inte-
and grals of Egs.(8)—(10), and it is this problem to which we
turn our attention in the next subsection.
[nn),=[n)In). 4

Here the plus sign is used for spin-singlet pairs and the mi-

nus sign when the spins are triplet paired, and for notationgf: Real-space quadrature _
simplicity, we have supressed the relevent spinor products.Olr the Coulomb and exchange integrals
Note that the use ofN one-electron eigenstates gives As we have already pointed out, it is often desirable for
N(N+1)/2 spin-singlet orN(N—1)/2 spin-triplet product numerical solutions of the single-electron wave functions to
basis states; by convention we construct the basis usinge defined only at discrete grid points; this is the case for the
only m=n. block-Lanczos method we use below in Sec. IV in solving
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the example problem of a dielectron in liquid water. Thefinite-element approach assumes that the one-electron wave
integrals we need to evaluate in E¢8)—(10) assume, how- function can be represented by a power series inside a cube
ever, that the wave functions are defined everywhere imf sidea around each grid point (the grid also has spacing
space, not just at thd,= Ng points on a cubic grid. We must a),

therefore develop a scheme that converts grid-based wave _

functions into continuous functions suitable for insertion into In()=[a(r) +(r—r)-Vipp(ry) +--- /W, (11

the above integrands. . o
One such approach would be to expand the wave funcwhere the factolV is there to preserve normalization of the

tion in a Fourier or other series, but in a disordered syster?€W (Piecewise continuon)swavez function upon converting
such expansions can actually increase the computational e§1€ normalization sum;|yn(r;)|*=1, into an integral over
pense beyond that of a direct, real-space approach. To ma&l&e simulation volume. We have found that the lowest-order,

this point clear, suppose that each one-electron state weP¥ piecewise-constant, expansion yields sufficient accuracy
expanded in a series for our purposes, so this rescaling amounts to dividing the

grid-based wave function by the square root of the cube’s
f)_i 1) volume, ¥r,(r) = ¢,(r;)/\a3, in each cube.
¥l = apfi(r), Taking the wave functions to be piecewise constant im-
mediately reduces the Coulomb and exchange integrals to a

turning each Coulomb or exchange integral in E@-(10)  double sum over grid point@n orderN? quadraturg of the
into a fourfold summation over expansion coefficents, with ageneral form

summand that could be nonzero for as manyaserms. In
a disordered system such as a liquid, we would expect such e?
lapeq= | dry| drp o
N

N

~ o~ ~ o~
an expansion to contain so many terms that the fourfold sum- 1 Ya(r)in(ro)ge(r2) (rz)
mation would be highly inefficient. Note that the fourfold

N
summation arises in this Cl calculation because we expand N~ S~ o~
the two-electron wave functions in a product-state basis. As —€ ;1 ’ﬁa(ri)'pb(ri)gl Pe(ry) da(r)
an alternative, we could work directly with the product
1
states, xf driJ drj—. (12
Ne Cube i Cube j Tij
* _ i )
‘”n(”‘ﬂm(’)‘; Anmfi(r). This expression can be rewritten directly in terms of time

rescaled(grid-based wave functions
Working in terms of products of single-electron wave func-

tions is akin to forming charge densities, so such a method e . .

would be similar in computational cost to the Hartree term in |abcd:gizl l/fa(ri)'r/fb(ri)zl be(ri) g(r) iy, (13

density functional calculations. Indeed, if the expansion co-

efficientsA,,,, are known from previous steps in the calcu- where

lation, this alternate expansion reduces the transformed two-

electron integrations from ordéd? to orderN>—the same .1

cost as the real-space integration. If, on the other hand, the bij= Jodrjlijdr [r=r']

coefficients must be computed separately, the additional

computationgof orderNg in general o\ log, N, for a fast is the electrostatic potential energy between uniformly

Fourier transforjmake the transformed integration schemecharged unit cubes, one centered at the origin, the other cen-

more expensive than in real space. Clearly, working withtered at grid point—j, in a grid of unit spacing. Becausfg;

such expansions makes sense if only a small subset of ternsindependent of any physical parameters in the system, we

in the expansion contributes to each single-electron statéieed only tabulate ibncefor any givenN, and can there-

The wave functions typical of electrons in disordered mediaafter use the table for any CI calculation.

however, cannot be represented by just a few plane waves or The question of how to efficiently compute integrals

other orthogonal polynomials. For such disordered systemdiaving the form of ourg;; has been addressed in a recent

we anticipate that calculating the six-dimensional Coulombpaper by Finocchiaro, Pellegrini, and Bientindsiwho

and exchange integrals directly in real space, an oNfer showed how to convert six-dimensional integrals containing

operation, will be computationally most efficient with Cl, a 1k, kernel into two-dimensional integrals in which the

provided that we can perform the real-space integrations witiCoulomb singularity is already integrated out; the remaining

accuracy comparable to that of Fourier methods. It is to thiswo integrationgwhich must be evaluated numericalison-

problem that we now turn our attention. verge rapidly. We have not found it necessary to use this
To compute the Coulomb and exchange integrals in reanapping for our Eq(14) because the six-dimensional inte-

space with grid-based single-electron wave functions, thgrals also can be calculated to a relative accuracy of

wave functions need to be defined everywhere in space. tD(10°8) or better using the numerical integration routines in

turns out that a low-order, finite-element approximation suf-Mathematica. These integrations only need to be performed

fices and leads directly to a simple quadrature for evaluatingnce for each of theNg(Ng+1)(Ny+2)/6 pairs of cubes

the Coulomb and exchange integrals, E—(10). Our  that have distinct values @f;; 3 ForNg= 16, tabulatings;;

2 Ne N

(14
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TABLE |I. Interaction energieghartreeg for two electrons confined to

J. Chem. Phys., Vol. 119, No. 15, 15 October 2003

R. E. Larsen and B. J. Schwartz

TABLE II. Singlet dielectron energie@V) in a representative equilibrated

an infinite cubic box 1 a.u. on a side. The energies reported are the sumvater configuration as a function of the number of single-electron states

of Coulomb

[

x| (€% )| nenynngnn;

and exchange

integrals [.(nynyn,n
-] and the error is computed relative to the re- metrized product basis Mged Ngtatest 1)/2.
sults of Alavi(Ref. 33. Note that Alavi has tabulated more integrals than we

’ r r
xnynz

used in the CI calculation, withl;=16. The number of states in the sym-

report here; we find the same rate of convergence and level of error for all  Nstates E; E; Es E,

reported integrals. Because the Coulomb interaction is scale invariant, the

result for other box sizels can be found by dividing the tabulated results by g :228 :g%g :gg; :;;i
Linau. 10 ~6.53 ~3.99 ~3.45 ~3.38
Singlet Triplet 12 —6.54 —4.26 -3.59 —3.46
Ngria (nenyn,,nynyn;) (relative errop® (relative errop? 15 —6.55 —4.29 —3.73 —3.61
8 (111,112 2.9932(1.79%
16 (111,112 3.0341(0.45%
24 (111,112 3.0417(0.20% error of only 0.55%. We believe that our real-space quadra-
32 (111,111 3.0444(0.12% ture, Eq.(13), converges more rapidly than Alavi's brute-
0, 0, . . .
8 (111,112 3.2469(2.209%  2.1257(0.13% force version because we preintegrated over the singular ker-
16 (111,112 3.3016(0.55%  2.1282(0.009% I 'wh bul Althouah Alavi's hvbrid |
24 (111,112 3.3117(0.24% 2.1284(0°) nel when we tabulated;; . Although Alavi's hybrid real-
32 (111,112 3.3253(0.16% space/Fourier-space approach is much more efficient than
8 (111,123 2.5448(1.90% 2.2969(0.27% our quadrature for this particular example, Alavi’s hybrid
16 2111.123 2-581850-47"2 2-3028(0-?35)3% method is limited to problems for which the single-electron
24 111,12 2.5887(0.209 2.3031(0 : : : )
3 (111123 2.5010(0.12% basis states can be represented by just a few Fourier compo

nents. The extra efficiency could not be realized for disor-
dered condensed-phase systems because, as we discussed in
Sec. 11 B, such systems would not have single-electron basis
states made up of just a few Fourier components. We believe
that our real-space quadrature gives the best combination of
fficiency and generality for calculating electron-electron in-
eractions with grid-based wave functions in disordered sys-
tems.

&The error is calculated relative to the values reported in Ref. 33.
Pldentical to the five figures reported in Ref. 33.

took just a few hours on a midrange PC; larger grid sizes ca
be easily accomodated by noting that for well-separate
cubes,¢;; rapidly approaches tj .3

C. Test of the real-space quadrature:

. C D. Application to the condensed phase:
Two electrons in a cubic box

The dielectron in water

Perhaps the simplest example of an interacting-electron We now app|y our method to the hydrated dielectron.
system is the case of two electrons in a box bounded byhis dielectron system is similar to the two-electrons-in-a-
infinite walls. This system recently has been studied in detaibox case discussed above in that the electrons are confined to
by Alavi,®® who obtained exact solutions for this system viag cavity by the repulsive water-electron pseudopotefitial,
Cl using a very efficient hybrid real-space/Fourier-spaceput it is different in that solvation provides an attractive well
quadrature to evaluate the Coulomb and exchange integralig, addition to the repulsive confining potential, and that the
Egs. (8)—(10). As a test of the accuracy of oufsix-  cavity size and shape will fluctuate in time. The single-
dimensional real-space technique, we have compared thelectron wave functions for this system cannot in general be
sum of the Coulomb and exchange integrals for the case q&presented by just a few Fourier components, so this prob-
two electrons in a cubic box computed using Etp) to the  |em is just the sort for which our real-space quadrature, Eq.
values tabulated by Alavi. The one-electron stateg13), was designed. In our calculations, the electron-water
[¥n, .n, 0 (N)sinmmx/L)sin(mymy/L)sin(,mzIL), wherel is  interaction is taken to be the pseudopotential of Schnitker
the box lengthwere generated analytically on the grid; prod- and Rossky* allowing us to make a direct comparison of the
uct basis states were formed as described in Sec. Il A. Thproperties of the dielectron with the large body of literature
results are summarized in Table | for a cube 1 a.u. on a siden the single electron generated using this
Although our real-space method is less computationally effipseudopotentidf:?*>2°Details of the model and the numeri-
cient than the hybrid real-space/Fourier-space method intrazal methods are given in Sec. IV A.
duced by Alavi, we see that our method converges rapidly  Tables Il and Il show the lowest four two-electron en-
with the number of grid points and gives similar accuracy. ergies for bound spin-singlet and spin-triplet dielectrons, re-

The more rapid convergence of Alavi’s hybrid Fourier spectively, as functions of the number of single-electron
method requires tuning of a length-scale parameter assocstates used to form the CI basis. In each case, the energetics
ated with dividing the Coulomb and exchange integrals intcare calculated using a single equilibrated water configuration
real-space and Fourier-space parts. It is interesting to notaken from an equilibrium molecular dynamics simulation
that for the(111,112 singlet case, Alavi also has computed run on either the singlet or triplet ground-state surface, as
the sum of Coulomb and exchange integrals using a direalescribed in Sec. IV B. In both cases, it seems that at least 12
real-space quadrature that still contains the singulay,1/ single-electron states must be used for the basis to achieve
term in the integrand. This so-called “brute force” approachenergies accurate to better than a feyd. However, the
has an error of roughly 2% witNy;=16, as compared to our computational cost of the Coulomb and exchange energies
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TABLE IIl. Triplet dielectron energieeV) in a representative equilibrated pasis states must be kept on average, leading to energies
water configuration as a function of the number of single-electron State%ithin 0.06% of the full 55 basis-state result. Keeping 0n|y
used in the CI calculation, witNy=16. The number of states in the anti- 19 of the 55 basis states results in an eightfold reduction in
symmetrized product basis Mged Nstaes 1)/2. . g

the number of Cl matrix elements that need to be calculated.

Nstates E, Ex Es E4 For molecular dynamics, the reductions in computational
4 _416 004 189 “078 effort discussed above will hold only as long as the important
8 —4.47 —2134 —219 —1.84 subspace remains unchanged. Our goal is to run dynamics
10 —4.50 —2.44 —-2.25 —-1.87 using only the important subsbace for some timg;a. be-
12 —4.50 —249 —2.28 —1.90 fore needing to recalculate ttall two-electron Cl matrix.
15 —451 —2:50 —2.36 —191 This idea of explicitly using only a subset of basis states and

periodically updating the subset is reminiscent of the neigh-
bor lists used in classical molecular dynamics simulatins.
scales aNitateg so it is desirable to use as small ldg @S The fractllon of the eigenvector that needs to be k&%,

and the time between updateggae Must be determined

possible. We have found that a choiceNyf ;&= 10 is satis- L c
factory for our molecular dynamics because errors associate(?{nplrlcally on a case by case basis. We hay e chbggrand
by requiring that molecular dynamics conserve en-

with integrating the equations of motion produce energy’update
fluctuations larger than the error made by keeping only 1 e .
states; thus, as we discuss in more detail in SecNW,es Insight into how to choose the parametefig,, and

=10 is large enough to adequately conserve the total energ§”’”‘alte can be gained by examining the amount of computa-
in our MD runs onal effort saved with this prescription. On average, for a

given value off;.,,, the important basis uses onlm,,
product states out of thW,,; available. Therefore, for each

I1. MAKING MIXED QUANTUM AND CLASSICAL time step between updates, we perfori,/Ny)? as
DYNAMICS WITH CI PRACTICAL: many computations as we would with the full basis. Math-
THE "IMPORTANT” STATES APPROXIMATION ematically, given a molecular dynamics time st&jpand the

Although we have established that the real-space clime between updates,pqae We perform only a fraction
method can be used to determine eigenstates for any one N \2 At At
realization of the single-electron potential, there is still somen(At;Niyy, 7ypdatd = N'mp (1— E) +( ) (15
work to be done before the ClI prescription can be used in tot Tupdat Tupdat
molecular dynamicgMD) simulations. This is because in as many computations as without the important-states ap-
MD simulations, the electronic eigenstates and the force tharoximation. The first term in Eq(15) gives the computa-
the electrons exert on the classical degrees of freedom neg@nal cost of the ClI calculation for times between updates,
to be calculated at every time step—leading to thousands @fnd the second term gives the cost associated with periodi-
nontrivial CI calculations even for simulations of modestcally recomputing the full Cl matrix. Equatiofl5) shows
length. The slowest step in our grid-based Cl implementatiorhat a balance must be struck between keeping as few states
turns out to be computing the Coulomb and exchange inteas possible but having to update more frequently and calcu-
grals, Eqs(8)—(10), between all pairs of product basis states.|ating a larger number of states but updating the important
For example, with 10 single-electron stategich gives 55 pasis less often.
product basis statgsve must compute 5455/2=1485 dis- The above discussion implicitly assumes that only a
tinct six-dimensional Coulomb and exchange integrals; for &ingle two-electron state is of interest at any given instant.
16° grid, this calculation took of order 5 min on an AMD However, any calculation that allows nonadiabatic dynamics
Athlon 1.7 GHz PC. To make dynamics practical we mustrequires knowledge of more than just the occupied state—for
therefore find a way to reduce the number of matrix elementgurface hopping or mean-field dynamics, we also need to
of V,, that have to be computed at every time step. know aboutunoccupiedstates—so we need to generalize the

Our solution is to make use of the fact that most of theidea of the important-states subspace. When the important
product basis states contribute very little to any of the lowerbasis states have been selected to accurately represent only a
lying two-electron eigenstates. We make this idea quantitasingle two-electron eigenstate, the other two-electron eigen-
tive by ordering the product basis statgsm). by the states formed from the subspace-only Hamiltonian will not
amount they contribute to a given eigenstatge, [Eq. (5)], necessarily be related to any of the two-electron eigenstates

and seeing how many basis statdsg,,, are “important’—  of the full Hamiltonian. We therefore also need to keep in
that is, how many are needed for the sum of their contribuour subspace the product basis states that are important for
tions, = ,Nime|c},|2, to be greater than some fractibp,, - eachtwo-electron eigenstate of interest. For the aqueous di-

For example, the aqueous singlet dielectron typically needslectron, for instance, representing each of the lowest four
only 15 product basis states to add up to 99.9% of théwo-electron eigenstates to 99.95% accuracy requires 46 of
ground-state wave functiorf;(,,=0.999). The ground-state the 55 product basis states; for this case, the important-states
energy computed in this 15 basis-state subspace differs frompproximation gives very little computational benefit. How-
the full 55 basis statéi.e., all two-electron configurations ever, accurate dynamics does not necessarily require such
with 10 single-electron eigenstajemnergy by only~0.1%.  precision foreverytwo-electron eigenstate. It turns out that
To achieve 99.95% accuracy;f,,=0.9995), 19 product- we only need high accuracy for two-electron eigenstates that
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have appreciable amplitude; weakly populated two-electrotemperature of~300 K and took place in a box 18.17 A on
states do not need to be as well represented to maintain ea-side, giving a density of 0.997 g/émThe single-electron
ergy conservation in the molecular dynamics. We have foun@igenstates are calculated using an iterative block-Lanczos
that in MF/SH simulations of the aqueous dielectron, it suf-procedure described in detail elsewh@ifeor the dielectron
fices to represent the unoccupied eigenstatég,gt=99% to  in water, a grid size oNy= 16 is the minimum necessary to
maintain energy conservation in the molecular dynamics, aadequately solve the discretized Sainger equation with
described below in Sec. IV A. This prescription requires onthe iterative block-Lanczos procedure, and we use this grid
average just 36 important-basis states to describe the lowesize for all dielectron calculations reported in this paper.

six singlet eigenstatesix being all that are needed for the Because Cl is just a general method for finding adiabatic
nonadiabatic runs described belowor the spin-triplet case, multielectron eigenstates, we can in principle use any nona-
we find that only 33 of 45 basis states are needed to get théiabatic molecular dynamics algorithm to model dielectronic
lowest six eigenstate@ieeded for the nonadiabatic run be- relaxation. Since the two-electron Cl calculation is the most
low) to an accuracy of;,,=0.9995 for the ground eigen- computationally expensive step, we restrict ourselves to

state and;,,=0.99 for the other eigenstates. nonadiabatic methods that rely only on local information
about the two-electron wave function. We therefore do not

IV. APPLICATION: DYNAMICS OF THE AQUEOUS consider methods that require self-consistent or nonlocal cal-

DIELECTRON culations, such as the stationary phase surface hopping

algorithm®#! From the remaining local nonadiabatic meth-

In this section, we will demonstrate the ability of our
opds, we choose to use Prezhdo and Rossky's MF/SH

real-space Cl method to calculate the nonadiabatic relaxati o . . '
dynamics for the two-electron condensed-phase case of tHgethod: ) Wwhich  combines  mean-field (Ehrenfest
hydrated dielectron. Although there has been disagreemef‘ilﬁm""m'Cé (including occasional collapses of the wave func-
about whether the hydrated dielectron has been directly ofion to take into account decoherepaith Tully's fewest-
served in flash photolysis experimeftSchmidt and Bartels SWitches surface hoppirjgiso known as molecular dynam-

H H g 13,22
have argue¥f that the lack of an ionic strength effect in the ICS With quantum transitionéDQT)].”>““Both MDQT and
recombination of single hydrated electrons, e, + €5, MF/SH are attractive choices for many-electron nonadiabatic

—20H +H,, implies that paired electrons should be dynamics because in these methods calculation of the

stable. Semicontinuum dielectric calculations also suggedit€llmann-Feynmar(HF) forces and the nonadiabatic cou-
that the singlet hydrated dielectron should eXisin addi- pling scgle linearly with the number of electrons. We chqose
tion, the ground state of the dielectron has been studied iMF/SH instead of MDQT because MF/SH does not require a
water clusters by Kaukonegt al® using spin density func- Swarm of trajectories from each classical initial condition—
tional theory. In order to accelerate the statistical samplingthus. within the stochastic approximations described in the
of electron-water configurations, these workers set the magdPpendix, every MF/SH trajectory is physically meaningful.
of oxygen equal to that of hydrogen; thus, the trajectories infhe details of MF/SH, along with explicit formulas for the
Ref. 38 do not contain dynamical information and serve onlytonadiabatic coupling and hopping probabilities for the mul-
to sample phase space. Furthermore, because the system Wigiectron case, are given in the Appendix. The time-
forced to run on the absolute ground state, the dielectrofépendent Schainger equation was propagated between
occasionally switched back and forth between singlet andnolecular-dynamics time steps using a fourth-order Runge—
triplet spin states. This switching is unexpected becaus&utta integrator, with a time stept=At/500 and a linear
nonadiabatic effects cannot produce intersystem crossindgterpolation between the two-electron eigenenergies at times
from one Spin state to another. Spin-sing|et and spin-trip|et andt+At. The mean-field Consistency criteria were taken
states mix only in the presence of magnetic figfisp the to be violated when the momentum conditifiq. (A5)] is
intersystem crossing observed by Kaukoeeal. must be an  larger than 0.1 and when the position conditidy. (A6)]
artifact of restricting the dynamics to the global ground statebecomes larger than the Bohr radas In the runs reported
Stable dielectrons in ammonia have also been predicted byere, mean-field rescaling occurred only from violations of
Deng, Martyna, and Klein, who used spin density functionalthe momentum condition.

theory combined with Car-Parrinello simulatiSrto study As we discussed in Secs. 11D and I, in order to make
metal-ammonia solutions for metal concentrations that allownolecular dynamics with CI wave functions practical, we
the formation of dielectrons. must set three parameters; the number of one-electron states

used for the product basiblg 4 the fraction of the eigen-
vectors kept when determining the important stafes,;

Our simulation of the hydrated dielectron consists of 200and the time between updates of the important statgg,-
classical water molecules and two QM electrons. We modeThese parameters must be chosen so as to minimize compu-
the water using SPC-flex potentifland propagate the clas- tational cost while maintaining correct dynamics; we gauge
sical trajectories using the Verlet algoritfhwith a time step  the correctness of the dynamics by requiring the total energy
of At=0.5fs. As mentioned in Sec. IID, we describe the of the mixed QM/CM system to be consenv&d.
water-electron interaction using the pseudopotential of The first parameter to be set is the number of single-
Schnitker and Rossk/, and calculate the force of the elec- electron states used to construct the product baiges
trons on the water using the Hellmann-Feynman formulaWe determined this parameter by running ground-state, spin-
(see the Appendjx The constaniN,V,E simulations had a singlet dynamics and constructing thél Cl matrix atevery

A. Model and computational details
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TABLE |V. Efficiency gains for different “important-states” parameters for
spin-singlet hydrated dielectrons. The results were calculated usingH5g.

with Ngiaes= 10 used to construct the product basis afg..chosen to be

as large as possible while maintaining energy conservation. The third and
fourth columns give the result when only the ground state is used to generate
the important-states basis. The right-most column estimates the computa-
tional efficiency for nonadiabatic dynamics with a time st&p=0.5 fs,
keeping accuracy for the lowest six two-electron energies. The total number
of important statesN;,,, was the average found from three representative
water configuations, with;,, for the first excited state given in the table
and with f;,,=0.99 for the remaining five states.

7(At=0.5 fs)
fimp Tupdate(fS)  7(At=1.0fs) 7(At=0.51fs) (nonadiabatic
-8 . X . .
0.999 2 0.51 0.31 0.56 200 0 200 400 600 800
0.9995 3 0.41 0.27 0.54 Time (fs)
0.9999 4 0.50 0.42 0.60

FIG. 1. Time dependence of the spin-singlet dielectron’s adiabatic energy
levels. The bold solid line indicates which state is occupied at any time. At
timet=0fs, the dielectronic wave function is instantaneously changed from

time step. We find that with molecular dynamics time Stepsthe ground state to the first excited state— &;, in the notation of the

. Appendiy. For clarity, we display evergther two-electron eigenstate be-
of 1 fs or 0.5 fs, the total energy is conseredhenever ginning with the second excited state and keep only the lowest nine adia-

Ngiates= 10. The energy is conserved fairly well witligiaes  batic eigenstateghat is, only states 1, 2, 3, 5, 7, and 9 are shown
=8, but occasionally we saw large-0.1 eV) and rapid
(~50 fg) excursions in the total energy for this smaller basis.
Large energy changes on such a fast time scale are a sign that . o . . L
the molecular dynamics is not corrggresumably, the two- spin-singlet a.nd _spln-tnplet dielectrons foII_owmg excitation
electron ground state needs to mix in unavailable highertrom_th? equmprlum_ground state to the f_|r_st excited state.
The initial configurations and water velocities used for the

lying single-electron states in order for the HF force to be diabati taken f | inalet and trilet
consistent with the ground-state energyo we rejeClNgates nonadiabatic runs were taken from long singiet and tripie
ground-state trajectories that will be discussed in detail in a

=8 as too small. Takindg,es 10 results in drift just barely b i i
acceptable by the standard mentioned above, but because Jt°>cduUeNt Papet. . . .
Figure 1 shows the eigenenergy history for the nonadia-

the ~NZ s Scaling in the size of the full CI matrix, we . . o ; L
choose the smallest possible number of single-electroﬁatIC dynamics of a spln-smg!et dielectron atfter e>'<C|t.at|0n
states, hereNg,.=10, even though energy conservation rom the gr<_)und to Fhe first excited _state. B_efore ex_(:ltanon at
does improve WittNg e 12. t=0,_ the singlet dlelectr(_)n occupies a s_lngle, slightly as-
states pherical(cf. Ref. 38 and Fig. Rcavity; the dielectron charge

Having determined thalgs 10 suffices to maintain . ) . o
adequate energy conservation, we turn next to setting th ensity has a radius of gyration of about 2.4 A, 20% larger

parameters that make molecular dynamics practital, than that for the hydrated electréhThe ground state of the

and 7yume We ran 1-2 ps ground-state trajectories fordielectron has a lower enerdy-—6.0 eV) than that of two

fimp=0.999, 0.9995, and 0.9999, and found that in order tg'°MNeracting electrons in a single-electron cavity2

avoid visible discontinuitieggreater tham-0.05 eV} in the IX 5'7 e;jV ﬁ'4 eV): tTh'St.'S sur%rg,lgg \t;etcatl;se the Cc?u
total energy at the update points, we must chooggae omb and exchange Interactions ace.> €v 1o the ground-

—2. 3, and 4 fs, respectivelf,and eitherAt=0.5 fs or At state energy of the singlet dielectron, which means that each
s Using Eq’ (15), we have tabulated the éfficiency fac. €lectron has an extra2.5 eV favorable interaction with the

tor, n, for these parameters. The results, presented in Tabeoé\é?rgtn \::v:\?igf'elthgzxgszlzgt;(?l?zai;\gté;;]??o :':o?e E'QSI:Z
IV, show that for ground-state adiabatic molecular dynamics’. ' .
ngle-electron states than the three seen for a single electron

runs the important-states scheme gives the greatest gain n . .
computational efficiency withf;;,,=0.9995 and 7,pgate and, as we will show in a subsequent papeeads to an

—3fs. Likewise, Table IV shows that for nonadiabatic dy- optical absorption spectrum with significant oscillator

namic.s with At—70 5fs, taking —3fs f.. —0.9995 strength to the blue of the absorption of the single hydrated
- ' update— v limp™— Y-

for the first excited state, arfg,,,= 0.99 for the lowest other elecbron. itati in Fio. 1 the udrd id

five two-electron states provides the best combination of ef- bon excriation, we see in Fig. eu fap!

fiency nd accuracy. We herelore choc-05, s o 1° 00U Sl a2 e sobent siuctre
=3fs, andf;,,=0.9995 for both the singlet and triplet 9 y P ’

nonadiabatic runs discussed below. After the Stqkes shift has broughF the. ground and e>.<citeq
states close in energy, solvent motions induce a nonadiabatic
transition back to the ground state, following which the
ground state then rapidly reequilibrates. We can understand
We now apply our real-space, Cl method with thethe driving force behind the dynamics both after excitation
important-states approximation to the MF/SH molecular dy-and after the nonadiabatic transition back to the ground state
namics algorithm to simulate the nonadiabatic relaxation oby examining the charge densities of the ground and first
hydrated dielectrons. We shall examine the relaxation of botlexcited states following the initial excitation. Figure 2 shows

i,14,15

B. Nonadiabatic relaxation of excited dielectrons
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. Q FIG. 3. Time dependence of the spin-triplet dielectron’s adiabatic energy
levels. The bold solid line indicates which state is occupied at any time. At

timet=0 fs, the dielectronic wave function is instantaneously changed from

the ground state to the first excited stal 8;, in the notation of the
t = 660 fs g = £

| Appendi¥. Only the lowest nine adiabatic eigenstates are shown.
= &
I
-— I :
[

——5A and their average values are 8.1 A, 7.9 A, and 2.6 A; the
FIG. 2. Three-dimensional contour plots of the dielectron charge density of’llmospcylmdncal symmetry _Of the triplet dielectron density
the spin-singlet dielectron grour(teft column and first-excitedright col- is shown by the near equality of the two largest moments.

umn) states for the indicated timésafter excitation. The lighter outer con- The ground-state energy of the triplet dielectten—4.7 eV)

tours show the dielectron charge density at 10% of the maximum value, an% greaterthan for two Widely separated hydrated electrons
the darker inner contours show the density at 50% of the maximum density,

- 25 ; ; ;
The nonadiabatic transition to the ground state occurs at the time (~2>.<_2'7 eV=-5.4 eV),” implying that the triplet dielec-
=561 fs. tron is at best metastable. The Coulomb4.3 eV) and ex-

change(~—1.2 eV) interactions contribute a net3.1 eV to

the triplet energy, indicating that the peanut-shaped cavity
that at timet=0 fs (just before the excitationthe ground- around the triplet dielectron providesl.2 eV more favor-
state charge density is concentrated in a single, somewhable electron-solvent interaction per electron than does a
aspherical cavity. On excitation to the first excited state, thespherical single-electron cavity. Just as in the singlet case,
charge density acquires two lobes that are slightly offsethis extra stabilization leads to more triplet bound states than
from the ground state’s center, but with most of the chargehe single electron has. However, as we will show in a sub-
still contained in the original cavi}/. In response to this sequent papéP, the triplet dielectron has a smaller gap be-
change in the charge density the solvent moves to occupy theveen the ground and excited states, resulting in less oscil-
narrow waist of the excited-state charge density, driving upgator strength to the blue of the absorption spectrum of the
the energy of the ground state. After 150 fs, the lobes of thaingle hydrated electron than for the singlet dielectron.
excited state have split into two holes separated-8y8 A, The mechanism and time scale for relaxation of the spin-
and the unoccupied ground state has more charge in one tifplet dielectron are very different than for the spin-singlet
the holes, with some charge density spreading to the otharase. Figure 3 shows that excitation to the first adiabatic
hole®® A nonadiabatic transition back to the ground stateeigenstate leads to a very rapid reduction in the energy of the
takes place 561 fs after the excitation. The subsequent rexcitedstate, in contrast to the slower shift in ground-state
equilibration happens because the newly occupied groundnergy for the spin-singlet case. Within about 50 fs, the
state has most of its charge in only one of the holes, so th8tokes shift causes the two lowest-lying eigenstates to be-
solvent can quickly squeeze out the nearly empty hole andome nearly degenerate, which lets the solvent quickly in-
repolarize around the occupied cavity to regenerate thduce a nonadiabatic transition to the ground state. The triplet
equilibrated dielectron state. relaxation does resemble that of the singlet in that it requires

Figure 3 shows the eigenenergy history for the nonadiaa large Stokes shift before a nonadiabatic transition to the

batic dynamics of a spin-triplet dielectron after excitationground state can take plapef. Eq. (A2)], but the rapid sta-
from the ground to the first excited state. Before excitation abilization of the occupied excited state is the opposite of
t=0, the triplet dielectron occupies a peanut-shaped cavityhat is seen in the other examples of nonadiabatic dynamics
(cf. Ref. 38 and Fig. % In order to characterize this non- in water®®1435The origin of this reversal can be seen in
spherical state, we have calculated the principal moments dfig. 4. Upon excitation to the excited state at titseO0 fs,
inertia of the triplet dielectron charge distributiaiivided by  the region of highest charge density is transferred from each
the electron magsThe square roots of these moments give aof the two lobes of a peanut-shaped ground state to the center
measure of the size of the dielectron along the principal axe®f the cavity near the narrowest part of the ground-state
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! . toexcitation, with an emphasis on the role played by ex-
Ground ' Excited change in determining excited-state lifetimes and solvation
dynamics.
t=0fs
V. DISCUSSION

In this paper we have introduced a method for calculat-
ing nonadiabatic mixed QM/CM dynamics for interacting
electrons in disordered condensed-phase systems. Nonadia-
batic dynamics requires not just the electronic ground-state
density, but the full ground- and excited-state wave func-
tions. We have shown that these many-electron wave func-
tions can be computed by a novel real-space Cl approach. In
practice, the method relies on two new developments, one
static and the other dynamical, to make multielectron nona-
diabatic dynamics computationally feasible. First, we have
introduced an efficient real-space quadrature to calculate the

' Coulomb and exchange interactions between electrons in a

t=51"fs

t=69fs

disordered system. This quadrature uses a low-order finite-
element expansion of the electronic wave functions and
works well even for single-electron wave functions that can-
not be simply represented by Fouri@r other orthogonal
eigenfunction components. Second, we have introduced the
idea of “important states” to improve the efficiency of nona-
diabatic mixed QM/CM dynamics for multielectron systems.
By periodically identifying those single-electron product ba-
i i sis states that contribute significantly to the many-electron
5A eigenstates and constructing the CI matrix for just this sub-
FIG. 4. Three-dimensional contour plots of the dielectron charge density obasis(between updateswe were able to reduce the cost of

the spin-triplet dielectron groundeft column and first-excitedright col- solving the multielectron quantum problem by nearly 50%
umn) states for the indicated timésafter excitation. The lighter outer con- \c/i\lith negligible error.

tours show the dielectron charge density at 10% of the maximum value, an Wi bined | Ji Cl hod
the darker inner contours show the density at 50% of the maximum e combined our real-space/important-states metho

density. The nonadiabatic transition to the ground state occurs at thwith the MF/SH (Ref. 21 algorithm for nonadiabatic
time t=69 fs. QM/CM dynamics and studied the nonadiabatic relaxation
dynamics of the hydrated dielectron. To the best of our
knowledge, this is the first Cl-based calculation of multielec-
charge density. The appearance of charge in a region previron nonadiabatic solvation dynamics. We plan to study both
ously occupied only by water molecules is accompanied by #éhe equilibrium and nonequilibrium properties of the hy-
large force repelling the now unfavorably solvating first-shelldrated dielectron in detail in future wofR,but the limited
water molecules, and we speculate that motion of water outesults of Sec. IV were sufficient to demonstrate that the
of this region is what drives the rapid solvent stabilization ofmethods introduced here do allow the simulation of multi-
the excited state. If this is indeed the case, then the spirelectron, condensed-phase, nonadiabatic dynamics. Work is
singlet and spin-triplet relaxations differ because in the sinalso underway in our group to incorporate two-electron cal-
glet case excitation largely moves charge density from oneulations into simulations of charge-transfer-to-solvent reac-
place to another inside the original cavity, whereas the excitions (CTTS) in systems with solvated alkali metal anions.
tation of triplet dielectrons results in charge density inside  We close with some comments on possible extensions to
the repulsive region of the water-electron pseudopotentiathe methods introduced in this paper. In addition to the fixed-
Figure 4 also shows that by timte=51 fs, the ground- and spin algorithm presented here, it would be straighforward to
excited-state charge densitites demergetically nearly de- incorporate solvent-induced or external magnetic fields into
generatg perpendicular peanut shapes that are slightly morghe formalism in order to explore how intersystem crossings
compact than the size of the equilibrium ground-state peanummight affect many-electron dynamics and relaxation in the
A few tens of femtosecond later, Bt 69 fs, a nonadiabatic condensed phase. Finally, it is important to note that even
transition takes place and within just a few hundred femtothough the examples considered in this paper had only two
seconds the triplet dielectron regains its equilibrium chargelectrons, the algorithm presented here can be generalized to
distribution, as is shown by Figs. 3 and 4. larger numbers of electrons. Certainly, any many-electron
The calculations presented here only scratch the surfaamolecular dynamics calculation can make use of the idea of
of hydrated dielectron system. In forthcoming pag@raie  keeping only important states in an expansion basis, regard-
will describe in detail the equilibrium properties of hydrated less of whether or not the basis states are of the CI product
dielectrons, including discussions of their geometry, stabilityform. Furthermore, any ClI treatment for more than two elec-
spectroscopy, and nonequilibrium dynamics following pho-trons will require the evaluation of Coulomb and exchange

t=240fs
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integrals of the form of Eq.12), so the real-space quadrature systems(especially condensed-phase systearg not typi-

we have introduced can be used with more than two eleceally found in mixed states. This implies that every so often
trons for no more computational coghan with two elec- the wave function is reset to a pure state; such reductmms
trons. Of course, at some point the cost of diagonalizing theollapse of the wave function are ascribed to decoherence.
many-electron Cl matrix must become greater than the coddecoherence is taken into account in MF/SH by inducing
of computing the Coulomb and exchange integrals, but idiscontinuous changes in the MF wave function whenever a
will be interesting to discover just how far full, multirefer- “mean-field consistency” criterioridescribed beloyvis vio-

ence Cl can be taken in disordered systems. lated. In addition, quantum transitions between adiabatic
states, surface hogSHs, are incorporated by allowing tran-
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APPENDIX: MEAN-FIELD WITH SURFACE HOPPING i (W[ VRHIW) 5.4 (R A2)
FOR Cl WAVE FUNCTIONS RTE-E) T i (R),

The CI method we have developed produces multielecyhere we have defined); , thenonadiabatic coupling vector
tron wave functions for both the ground and excited states ofetween stateg and i.%% 1t is computationally most conve-
any given electron—environment interaction. For examplenjent to use the second-to-last expression above to compute
given the positions at any instantaneous configuration 0&” because it can be calculated using the same code as for
some solvent along with the electron-solvent interaction, wehe Hellmann—Feynman forcgsee Eq(A3) below].*° Note
can find the(adiabatig eigenstatest’; for the multielectron  that in the absence of magnetic fields to mix the singlet and
system. Armed with these states, the system can be propgipjet (+) states, the nonadiabatic coupling between states
gated using a variety of mixed quantum and classicalyth differing spin symmetry vanishég.

schemes.In this Appendix, we review the MF/SH algorithm For the mean-field trajectory, the HF force associated
introduced by Prezhdo and Rossky, and give explicit formuyith each degree of freedomis

las for the Hellmann-Feynman force and nonadiabatic cou-

pling for two-electron Cl wave functions. For traditional sur- Fy=—(W|dH/oN| W)
face hopping or adiabati¢Born-Oppenheimer dynamics,
the e.qu'athns shown here apply with the appropriateial) — _Z a aj*z E CthL,m,
specialization. i nm p’
The MF/SH algorithm combines MF dynamics, in which aHL(1)
the state of the quantum subsystem is a normalized mixture xf dr| =22 p(Z/) (), (A3)
of the adiabatic eigenstatd®’)==;a;(t)|¥;), with surface I\ mmm

hopping, which allows discontinuous transitions betwee
states. The classical MF forces on the solvent degrees o
freedom are given by the HF force described below, and th
adiabatic expansion coefficiends evolve according to the
time-dependent Schdinger equation

here we have taken advantage of the symmét[y: I:|2
nd noted that {V,,/d\) =055 This force has the same
orm as the single-electron HF force, except that a two-
electron densityp®)(r) replaces the single-electron density
as the effective classical charge density. The two-electron
‘I’i>) (A1) density p()(r) can in turn be written in terms of diagonal

' [pS2()=|ya(r)[?]  and  off-diagonal  [p$H(r)

. . . ) = ,(r) ¢ (r)] one-electron densities:
whereE; is the adiabatic energy of the two-electron state

The factor(W;|oW;/dt) is called the nonadiabatic coupling  p@ . (1) =[p{) (1) S+ p{e(1) Burn
coefficient. Integrating EqAl) and the classical equations
of motion using the HF force ensures that the total energy of + o) (1) Snrm® P (D) Sarmr ],
the mixed quantum/classical system is conserved. @) ) W
The sorts of mixed states just described arise from pas-  Pann'm (") =V2[Ppa(1) St Pryrn(1) S,
sage through regions with strong nonadiabatic coupling; @ W
away from regions of strong nonadiabatic coupling, quantum  Pnnnrn (1) =201 (1) Spnr - (A4)

ot

d
iha;=2, at) Ejaij—iﬁ<x1rj
J

Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 15, 15 October 2003 Nonadiabatic molecular dynamics 7683

The plus signs are for spin-singlet states, the minus signs aeguation that governs the physical Miixed-statg evolu-

for spin-triplet states, and the latter two equations only applytion, Eq. (A1), but its expansion coefficien&"* are never

for the spin-singlet case. reset. For each time step in which no MF rescaling takes
As we have already pointed out, the MF/SH algorithmplace, there is a possibility that the system will undergo a

uses a reference trajectory to incorporate decoherence in aarface hop, in which the reference statg: changes to

ad hocmanner. In ordinary MF dynamics, the state of thestatej. Surface hops between stateandj occur stochasti-

quantum subsystem is described by the expansion coeffeally, with a probability P;_; given by Tully's fewest-

cientsa;, as noted above, but an additional piece of book-switches prescriptidi

keeping is used to include surface hopping in MF/SH dy- aux
H . 4 : H [ i a"l}|

namics; at each time, the system is considered to be “in"a p. - _ord - _ (.| —') | At (A7)
. . . . — aux ] (9t I

particular adiabatic stat@ven though the true state is actu- a,

ally a mixturg. The mean-field part of the algorithm then \yhereAt is the molecular dynamics time step and the above
uses tvyo distinct classical §ystems tp include dephasing in &g, is only valid wherW; andW,; are normalizecdiabatic
approximate way. Thehysical coordinatesR are those of  gjgenstates. When a transition to stateccurs, the MF ex-
the actual classical system, whereas a second sefesénce  ansion coefficients change discontinuouslyate: 8 and
coordinatesR e comprises a fictitious system which is used ihe reference trajectory changes to match the physical one,
to decide when to collapse the mean-field wave function tquef_R andP,q;—P.
the pure reference stats by settinga;=dg;, . The The final aspect of the MF/SH algorithm is the same as
physical coordinate® obey mean-field dynamics, whereas for other SH methods, and this is to ensure energy conserva-
the reference coordinates propagate according to forces dfon following either a mean-field rescaling or a surface hop.
termined by just the reference two-electron eigenstategvery time either a mean-field rescaling or a surface hop
| W er)=|nrer) associated withR ., NotR. The HF force for  takes place, the energy in the quantum-mechanical sub-
the reference trajectory can be calculated with @), with  system changes discontinously by an amoniitgy . To
a;= 6 n . and the charge densities determined using th@onserve the total energy in the system, therefore, any excess
single-electron states associated wRh.;, as mentioned energy must be dumped into the classical degrees of freedom
above. and any deficit must be taken from the classical kinetic en-
Initially, the reference positions and velocities match theergy. Each classical degree of freedom receives or donates
physical coordinates and velocities, but the reference trajeenergy according to how much it contributes to the nonadia-
tory evolves according to the reference HF forces describelatic coupling, as determined by Eé2). The details of this
above instead of the MF forces from the mixed state. Agpartitioning have been discussed elsewherkand remain
more and more nonreference states begin to mix into the MEnchanged for the two-electron case.
wave function, the physical and reference coordinates and
momenta(denotedP and P,.) diverge. This divergence is
used as a criterion favI F rescaling which mimics decoher- 1 An overview of various mixed QM/CM methods can be founddiassi-

. . y cal and quantum dynamics in condensed phase simulations: proceedings
ence by resetting the mixed state paramewrs 5"nref’ of the International School of Physics “‘Computer simulation of rare
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