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We introduce an efficient multielectron first-principles based electronic structure method, the
two-electron Fourier-grid �2EFG� approach, that is particularly suited for use in mixed quantum/
classical simulations of condensed-phase systems. The 2EFG method directly solves for the
six-dimensional wave function of a two-electron Hamiltonian in a Fourier-grid representation such
that the effects of electron correlation and exchange are treated exactly for both the ground and
excited states. Due to the simplicity of a Fourier-grid representation, the 2EFG is readily
parallelizable and we discuss its computational implementation in a distributed-memory parallel
environment. We show our method is highly efficient, being able to find two-electron wave
functions in �20 s on a modern desktop computer for a calculation this is equivalent to full
configuration interaction �FCI� in a basis of 17 million Slater determinants. We benchmark the
accuracy of the 2EFG by applying it to two electronic structure test problems: the harmonium atom
and the sodium dimer. We find that even with a modest grid basis size, our method converges to the
analytically exact solutions of harmonium in both the weakly and strongly correlated electron
regimes. Our method also reproduces the low-lying potential energy curves of the sodium dimer to
a similar level of accuracy as a valence CI calculation, thus demonstrating its applicability to
molecular systems. In the following paper �W. J. Glover, R. E. Larsen, and B. J. Schwartz, J. Chem.
Phys. 132, 144102 �2010��, we use the 2EFG method to explore the nature of the electronic states
that comprise the charge-transfer-to-solvent absorption band of sodium anions in liquid
tetrahydrofuran. © 2010 American Institute of Physics. �doi:10.1063/1.3352564�

I. INTRODUCTION

The simulation of electronically excited reactions in the
condensed phase from first principles remains a challenge.
This is in part because ab initio electronic structure methods
capable of describing excited states are currently far too
costly to be applied directly to the large number of atoms
that make up a condensed-phase simulation. The vast major-
ity of computer simulations of electronically excited
condensed-phase reactions have therefore used either single-
electron model Hamiltonians1–3 or semiempirical quantum
chemical methods.4–7 Although the low computational cost
of such methods favors their use in condensed-phase simu-
lation, a first-principles description of electronic structure
would be desirable, particularly for systems where physical
insight is lacking or where parametrization to experimental
data is not possible.

In this paper, we present a new first-principles electronic
structure method that is particularly suited to condensed-
phase simulation: the two-electron Fourier-grid �2EFG�
method. The method performs a direct diagonalization of a
many-electron Hamiltonian in a grid basis set such that it is
equivalent to configuration interaction with single and

double �CISD� excitations. The basis set is flexible enough to
describe both strongly and weakly correlated systems, and
because it is a grid, it is readily transferrable from one sys-
tem to another. As our method is equivalent to CISD, ex-
change and correlation are treated at a high level �exactly for
2-electron systems� and the excited states are meaningful.
Moreover, the method is efficient enough to be performed
repeatedly, for example, at each time step of a long molecu-
lar dynamics simulation trajectory.

One of the keys to implementing our method in
condensed-phase simulations is the use of a mixed quantum/
classical �MQC� scheme, which for our purposes entails a
quantum mechanical treatment of the valence electrons of a
solute molecule and a classical treatment of the solute core
and solvent molecules. The classical particles and quantum
electrons are coupled through molecular pseudopotentials
that are rigorously derived from first-principles quantum
chemistry calculations and therefore include Pauli repulsion
and exchange interactions in addition to electrostatic interac-
tions between the valence electrons and solvent molecules.8,9

In what is presented below, we outline and apply our
2EFG method for two-electron systems. This is because with
the use of molecular pseudopotentials,8,9 many condensed-
phase problems of interest are reduced to effective two-
electron systems,10–13 for which our 2EFG method provides
an exact treatment. �We note that the generalization of our
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2EFG method to additional electrons is straightforward if
there are sufficient computational resources�. For two-
electron systems, our method is efficient enough to be used
iteratively in molecular dynamics simulations—even with
�108 basis functions. Thus, the purpose of this paper is to
present the development and implementation of our 2EFG
method, and to benchmark the accuracy of the method on
two test electronic structure problems: the harmonium atom
and the sodium dimer. Although our grid-based method is
ultimately designed for use in condensed-phase simulation,
we chose these gas-phase two-electron problems as they
have exact or numerically accurate solutions with which to
compare.

In the following paper, hereafter called Paper II,13 we
apply our 2EFG method to the problem of charge-transfer-
to-solvent �CTTS� reactions, providing new insight into the
excited-state electronic structure of the sodium anion �so-
dide� in liquid tetrahydrofuran �THF�.14–26 CTTS reactions
represent a challenge to simulate from first principles be-
cause they involve a valence electron being promoted from
an anionic solute to a solvent-supported excited state that
ultimately detaches and forms a solvated electron.14,27–30 The
quantum mechanical region for a CTTS reaction thus encom-
passes not only the solute but also all the solvent molecules
that support the CTTS excited state and the detached sol-
vated electron. The fact that our 2EFG method uses a grid
representation of the wave function allows it to describe such
electronic states that span multiple solvent molecules as well
as the spaces between solvent molecules.

The remainder of this paper is outlined as follows. In
Sec. II we develop our 2EFG method and discuss its compu-
tational implementation. In Sec. III we demonstrate that our
2EFG method can yield numerically exact results by apply-
ing it to the harmonium atom. As a test of our method on a
molecular system, in Sec. III we also apply our 2EFG
method to calculate the electronic states of a gas-phase so-
dium dimer. We then conclude in Sec. IV, and also present an
appendix in which we include details of additional numerical
techniques that we used to improve the accuracy and effi-
ciency of the method. Finally, in the supporting
information,31 we show how the 2EFG method improves
upon a real-space CISD method that we developed in previ-
ous work.10

II. DEVELOPMENT OF THE 2EFG METHOD FOR
MOLECULAR SIMULATION

A. The advantage of Fourier grids for solving the
Schrödinger equation

To introduce our 2EFG method, we start by writing the
time-independent Schrödinger equation �TISE� for two elec-
trons in atomic units:

Ĥ��� = �ĥ1 + ĥ2 + r̂12
−1���� = E��� , �1�

where Ĥ is the two-electron Hamiltonian, ĥi= T̂i+ V̂i is the
single-electron Hamiltonian for electron i with kinetic and

potential energy operators T̂i and V̂i, respectively, r̂12
−1 is the

electron-electron Coulomb operator, and ��� is a two-
electron eigenstate. To solve Eq. �1�, we first express the

two-electron eigenstate in a basis of N6 real-space grid
points, which we write in Hilbert space as:

��� = �
i,j

N6

�i,j�rir j� , �2�

where 	�rir j�
 is a six-dimensional �6D� grid point basis,
	�i,j
 are real-valued expansion coefficients in this basis, and
N is the number of grid points along a single spatial dimen-
sion. As indicated by our choice of symbol, �i,j has the
physical interpretation of representing the value of the elec-
tronic wave function at the 6D real-space coordinate �ri ,r j�
and thus fully describes the spatial properties of both elec-
trons, including their correlation. In other words, Eq. �2� is
equivalent to a full CI expansion of the two-electron wave
function. We enforce exchange symmetry in our expansion
by choosing �i,j = �� j,i in the values of the expansion co-
efficients, with the + and � signs corresponding to singlet
and triplet states, respectively; this guarantees that the spatial
wave function for a singlet�triplet� state is �anti�symmetric
with respect to exchange of electron 1 and 2’s coordinates.

In the basis of Eq. �2�, the matrix representation of the
two-electron Hamiltonian in Eq. �1� has a size of N6�N6,
which even for the relatively modest choice of N=16 would
require 2 petabytes of memory to store the �3�1014 matrix
elements. Thus, direct diagonalization of this matrix is sim-
ply not computationally feasible. Instead, we iteratively
solve Eq. �1� for the low-lying states of interest using the
Lanczos algorithm,32 since this approach requires only the
multiplication of the Hamiltonian matrix into a vector, which
can be performed so that storage scales linearly with the
number of basis functions �O�N6��. To apply the Lanczos
algorithm, we take advantage of the fact that in a grid basis,
the operation of the Hamiltonian on a wave function can be
made particularly simple: the kinetic energy operators are
local �have a diagonal matrix representation� in reciprocal
space and the potential energy operators are local in real
space. Thus, we can use fast Fourier transforms �FFTs� to
transform the wave function between real and reciprocal
space:

�klkm��� � �̃l,m = �
i,j

Fi,lFj,m�i,j , �3�

where 	�klkm�
 is a 6D reciprocal-space grid-point basis state,
kl is a dimensionless reciprocal-space vector that has com-

ponents with integer values running from −N /2+1 to N /2, F̂
is the matrix representation of a three-dimensional FFT with

components Fi,l and �̃l,m is the reciprocal-space representa-
tion of the wave function. Thus, in atomic units, the opera-

tion of the single-electron Hamiltonians, ĥ1 and ĥ2, on a
wave function is:1

�rir j�ĥ1��� = ��F̂−1 · T̂ · F̂�1 � Î2 · ��i,j + V�ri��i,j , �4�

�rir j�ĥ2��� = �Î1 � �F̂−1 · T̂ · F̂�2 · ��i,j + V�r j��i,j , �5�

where T̂ is the kinetic energy operator, which is diagonal in
reciprocal space with matrix elements
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T̃l,l = �2�/L�2kl
2/2, �6�

where L is the length of the grid in one dimension, V�ri� is
the real-space representation of the potential energy operator

at grid point location �ri�, and Î is the identity matrix. The
subscripts 1 and 2 in Eqs. �4� and �5� indicate which of the
two electrons the operator acts on. Thus, the first term of Eq.
�4�, which applies the kinetic energy operator to the real-
space representation of the two-electron wave function, can
be read as: leaving electron 2’s wave function alone, FFT the
wave function coordinates of electron 1, multiply by the di-
agonal kinetic energy matrix, and then inverse FFT electron
1’s wave function. Equations �4�–�6� reveal two reasons why
Fourier-grid methods are particularly efficient. First, the ele-
ments of the kinetic energy operator never change, so they
need only be calculated once and tabulated for use in mo-
lecular simulation. Second, due to the scaling of the FFT, the
computational cost of solving Eq. �4� scales only as
N6 Log N, which is close to linear scaling in the size of the
basis. In our 2EFG implementation, we use a slightly modi-
fied version of Eqs. �4� and �5� that corrects aliasing errors in
the FFT, as described in more detail in Sec. 1 of the Appen-
dix.

In addition to the fact that the kinetic energy operator
has a diagonal representation in reciprocal space, a Fourier-
grid representation of the wave function provides the advan-
tage that the electron-electron Coulomb operator, r̂12

−1, also
has a diagonal representation in the 6D real-space basis of
Eq. �2�. This feature stands in stark contrast to approaches
based on Gaussian basis functions, where r̂12

−1 has a dense-
matrix representation whose calculation, storage and use are
the most computationally demanding parts of traditional
quantum chemistry calculations.33 Although the Fourier-grid
representation of the electron-electron interaction is diago-
nal, there is an issue of the divergence in r̂12

−1 at r1=r2, since
this singularity cannot be represented on a finite real-space
grid. We deal with this singularity following an approach we
previously developed for evaluating two-electron integrals
on a real-space grid that takes the wave function to be piece-
wise constant.10 With this assumption, the matrix elements of
the electron-electron Coulomb operator in the 6D real-space
grid basis become:

�rir j�r̂12
−1�rkrl� = a−1�i,j�i,k� j,l, �7�

where a is the grid-spacing, � is a Kronecker delta and

�i,j = 

0

d3r

�i−j�

d3r�
1

�r − r��
�8�

is the Coulomb interaction between two uniformly charged
unit cubes, one located at the origin and the other located at
�ri−r j� /a �that is, at grid point “i− j”�. By writing Eq. �8� in
terms of unit cubes, �i,j does not depend on the grid spacing,
and thus it only needs to be evaluated once and tabulated for
future use. As in our previous work,10 we evaluated Eq. �8�
using the numerical integration routines in Mathematica for
each of the N�N+1��N+2� /6 pairs of cubes that have distinct
values of �i,j, and we set �i,j =a / ��ri−r j�� for cube displace-
ments greater than 16 grid points. Although a piece-wise

constant quadrature is a low-order approximation, we
showed previously that it yields electron-electron Coulomb
matrix elements between particle-in-box �PIB� eigenstates
that rapidly converge to the exact results with increasing grid
density.10 Thus, we expect that application of our 2EFG
method to any two-electron problem will yield essentially
exact results, providing the real-space grid is dense enough.
We shall explore the convergence of our method in chemi-
cally relevant systems below in Sec. III.

Using the piece-wise constant quadrature of Eq. �7�, the
operation of the electron-electron Coulomb operator on a
wave function is:

�rir j�r̂12
−1��� = a−1�i,j�i,j . �9�

The operation of the full Hamiltonian on a wave function is
thus obtained by adding the results of Eqs. �4�, �5�, and �9�
which, when used as input to the Lanczos algorithm,32 al-
lows us to iteratively solve Eq. �1� for the electronic states of
interest.

B. Comparison to other grid-based many-electron
wave function methods

It is worth noting that other grid-based many-electron
wave function methods have been presented in the literature.
For example, Alavi used PIB states to study the properties of
two interacting electrons in a box.34 Although his method
used an efficient mixed real and reciprocal-space grid
quadrature to evaluate the electron-electron integrals in the
PIB basis, the Hamiltonian had a dense matrix representation
and therefore would be too costly to implement for
condensed-phase systems that require a large basis expan-
sion. In addition, we previously developed a real-space CI
method10 and used it to study the hydrated dielectron35–37

and aqueous sodide.11 As shown in the Supporting
Information,31 our 2EFG method is related to our previous
real-space CI method. Our previous method, however, was
limited to only a few tens of basis functions. This means that
for many systems, the lack of a complete basis leads to poor
energy conservation when calculating the forces on the clas-
sical particles from the quantum mechanical electrons, so
that costly Pulay force corrections38 would be necessary for
rigorous energy conservation. This problem is avoided in our
2EFG method, which variationally optimizes wave functions
in a stationary basis at every time step. Finally, Kubota and
Nobusada developed a discrete variable representation
�DVR� method to study exciton states �electron-hole wave
functions� in quantum boxes.39,40 Due to the similarities of
DVR and Fourier grid representations,41 Kubota and No-
busada’s approach is also related to our 2EFG method, al-
though it is appropriate only for calculating spinless exciton
states.

C. Computational implementation of the 2EFG

Having presented the foundation of our CI-based 2EFG
method, we now discuss the details of its computational
implementation. Since our goal is to use the 2EFG method
repeatedly, at each time step of a MQC molecular dynamics
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�MD� simulation, in this section we also highlight the steps
we took to make the 2EFG method as efficient as possible.

There are two principal factors that determine the com-
putational cost of our 2EFG method. The first is how many
iterations the Lanczos algorithm takes to converge to the
desired eigenvalues when solving Eq. �1�. We reduced the
number of iterations by using a Chebychev spectral trans-
form, as outlined in Sec. 2 of the Appendix. The second
computational cost in our method is associated with the stor-
age and manipulation of large 6D wave functions. Even for
systems that remain localized in a small region of space so
that the wave function can be adequately described by a
modest grid basis, e.g., N=16, each 6D wave function is
represented by 166 numbers, which requires roughly 128
Mbyte of storage. Although this is well within the limits of
modern desktop computers, for larger systems, we find that
bases of up to N=32 are necessary, requiring 326 numbers or
roughly 8 Gbyte of storage per wave function. To store and
manipulate wave functions of this size, we use distributed-
memory parallel processing and split the wave functions, �i,j

in the j index among nCPU CPUs. Communication between
CPUs is handled with the message passing interface �MPI�.42

We make use of a parallel implementation of the implicitly
restarted Lanczos method �IRLM�43 called PARPACK that also
relies on MPI.44

To simplify the operation of the Hamiltonian and to re-
duce the amount of communication needed between the

CPUs, we note that the operation of ĥ2 in Eq. �1� is related to

ĥ1 by permutation symmetry:

ĥ2��� = � P̂12ĥ1��� , �10�

where the +�−�-sign is for singlet�triplet� states and P̂12 per-
mutes the coordinates of electrons 1 and 2.45 Using Eq. �10�,
and noting that r̂12

−1 remains unchanged upon permutation of
the electrons’ coordinates, the operation of the full two-
electron Hamiltonian becomes:

Ĥ��� = � Î � P̂12

2
��2ĥ1 + r̂12

−1���� , �11�

where Î is the identity operator and the +�−�-sign is for sin-
glet�triplet� states. The advantage of Eq. �11� is that the op-

eration of ĥ1 and r̂12
−1 is local to each CPU and therefore no

communication between CPUs is necessary for these terms.

The P̂12 operator swaps the indices of the wave function

expansion vector: P̂12�i,j =� j,i. This transpose necessarily
involves communication between the CPUs, but it can be
accomplished easily using an MPI all-to-all communication
routine.

An added bonus of using Eq. �11� is that �Î� P̂12� /2
projects out wave function components of any unwanted spin

symmetry. For example, operating �Î+ P̂12� /2 on a mixed
spin state removes the triplet component of the wave func-
tion but leaves the singlet component untouched. Although
the Hamiltonian in Eq. �1� is spin invariant and there should
be no formal mixing of spin states, numerical round-off error
will gradually cause spin mixing after repeated operation of

the Hamiltonian on an expansion vector. The use of Eq. �11�
removes this error at no additional computational cost.

III. TESTING THE 2EFG METHOD

Having presented all of the elements of our 2EFG
method, in this section we demonstrate its applicability to
chemically relevant two-electron systems. For this purpose,
we have tested our 2EFG method on two well-studied two-
electron systems: harmonium, which is a model atom con-
sisting of two electrons in a harmonic well potential, and the
sodium dimer molecule, Na2. We chose these problems as
they have exact or numerically accurate solutions with which
to compare. Furthermore, they represent a rigorous test of
our cubic-grid-based method on problems with noncubic
symmetry.

A. Harmonium

The Hamiltonian for the two electrons of harmonium in
atomic units is:

Ĥ = −
1

2
�1

2 −
1

2
�2

2 +
1

2
	2r1

2 +
1

2
	2r2

2 + r12
−1, �12�

where 	 is the harmonic oscillator frequency. Harmonium
has received considerable attention as a model by which to
test density functionals.46–53 This is because Eq. �12� be-
comes separable with a change in coordinates so that the
TISE has analytic solutions for a particular, infinite set of 	,
the three largest of which are 	=0.5, 0.1 and 0.036 537 3
atomic units.54 The largest two values of 	 yield weakly
correlated electrons while all of the others �	=0.036 537 3
and smaller� give strongly correlated electrons.55 Thus we
can test our method on harmonium in both weakly and
strongly correlated electron regimes, and compare the results
from our method to the exact answer.

To test our 2EFG method, we chose two oscillator fre-
quencies: 	=0.5 and 0.036 537 3. For each of these two val-
ues of 	 we first adjusted the length of the simulation cell
�by adding grid points while keeping the grid-spacing fixed
at 0.375 Å for 	=0.5 and 1.4375 Å for 	=0.036 537 3� until
the ground-state energy was converged to within one part in
105; for 	=0.5, this was found to be 6 Å. For
	=0.036 537 3 a larger simulation length of 23 Å was re-
quired because the confining potential is much shallower
than for 	=0.5, so the ground-state wave function is much
more diffuse. For these two oscillator frequencies, the lowest
eigenvector was found using the IRLM43 as coded in
PARPACK.44 We used the dealiasing procedure, described in
Sec. 1 of the Appendix, with Nd=2N. Since the Harmonium
calculations were not particularly computationally intensive,
we did not use the Chebychev polynomial transform de-
scribed in Sec. 2 of the Appendix.

After having found the appropriate simulation box
lengths for the two values of 	, we then explored the con-
vergence of the ground-state energy with the grid density, as
summarized in Table I. We see that an accuracy of �0.1% in
the ground-state energy can be achieved even with a fairly
modest number of grid points �N=20� in both the weakly and
strongly correlated regimes. Furthermore, we also see that on
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increasing the grid density, the ground-state energies rapidly
converge to the exact solutions. We are thus encouraged that
our 2EFG method, despite representing the electronic wave
function on a cubic grid, is able to accurately treat a system
with spherical symmetry.

To explore the quality of the solutions with our method
in more detail we also considered several properties of the
ground-state wave functions. Since a 6D wave function is
not easily visualized, we instead considered two different
densities: the electron density,


�r� = 2
 ���r,r2��2dr2, �13�

and the intracular density,

I�r� =
 
 ���r1,r2��2��r − r1 + r2�dr1dr2. �14�

The intracular density gives the probability of finding the
electrons with a certain displacement from each other; i.e.,
I�r� characterizes the two electrons’ spatial correlation. Due
to the spherical symmetry in the harmonium Hamiltonian,
both the ground-state electron density and intracular density
are defined by radial functions. The topological features of

�r� and I�r� and how they relate to the degree of electron
correlation in harmonium have been discussed in detail
elsewhere,55 so we will not repeat them here except to dis-
cuss how our 2EFG method compares with exact results.

The green�symbols in Fig. 1 show 
�r� for 	=0.5
�panel �a�� and 	=0.036 537 3 �panel �b�� as calculated with
our 2EFG method with N=32. The exact radial electron den-
sity, plotted as the solid black curve in each panel, has a
maximum at r=0 for 	=0.5, but the maximum is shifted off
the origin to r�1.3 bohr for 	=0.036 537 3. The presence
of the maximum at r�0 for 	=0.036 537 3 is indicative of
the strongly correlated regime: the electrons are repelling
each other strongly enough relative to the harmonic confin-
ing potential that the electron density no longer peaks at the
harmonic well minimum. For both 	=0.5 and
	=0.036 537 3, we see that the 2EFG method produces den-
sities that are in excellent agreement with the exact results.
In panel �b�’s inset, the region around r=0 is expanded to
show that the 2EFG method also correctly captures the maxi-
mum in 
�r� at r�1.3 bohr, although the 2EFG density is
slightly overestimated in this region. We found that the
ground-state electron density of harmonium calculated with

TABLE I. Convergence properties of the ground-state energy �in atomic
units� of harmonium for two oscillator frequencies, 	, calculated via our
2EFG method with different grid densities and comparison to the exact
results.

N a E�	=0.5�b E�	=0.036 537 3�c

12 1.9930 0.219 085
16 1.9964 0.219 168
20 1.9978 0.219 195
24 1.9986 0.219 206
28 1.9990 0.219 212
32 1.9992 0.219 215
Exact 2.0 0.219 224

aThe number of wave function grid points per dimension. Dealiasing was
used with Nd=2N.
bFor this set of calculations, the simulation grid spanned 6 Å on a side.
cFor this set of calculations, the simulation grid spanned 23 Å on a side.
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FIG. 1. Properties of the electronic ground state of harmonium. Panels �a� and �b�: radial electron density, 
�r�, for 	=0.5 a.u. and 	=0.036 537 3 a.u.,
respectively. Panels �c� and �d�: intracular density, I�r�, for 	=0.5 a.u. and 	=0.036 537 3 a.u., respectively. The exact results are plotted as the solid black
curves and the numerical 2EFG results for different grid densities are plotted as symbols at the grid point locations �red � :N=12, blue +:N=16, and green
� :N=32�. Only the N=32 results are shown in panels �a� and �b�. The inset in panel �b� expands the region around r=0. For clarity, in panels �c� and �d�,
we plot I�r� only for the three grid points closest to the origin and connect them with lines to guide the eye.
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smaller grid-basis sizes of N=12 and N=16 �not shown for
clarity� are also in excellent agreement with the exact results.

The colored symbols in Figs. 1�c� and 1�d� show the
intracular density, I�r� calculated from our 2EFG method for
	=0.5 and 	=0.036 537 3, respectively; the different sym-
bols show the results for different grid densities. The exact
intracular density is plotted as the solid black curve in each
panel. For both 	=0.5 and 	=0.036 537 3 we see that the
2EFG results are in excellent agreement with the exact re-
sults for r greater than the maximum in I�r� �at
r�1.25 bohr for 	=0.5 and at r�9.5 bohr for 	
=0.036 537 3�, even for the calculation with the fewest grid
points, N=12 �red circles�. For values of r around the mini-
mum and smaller, the agreement is not as good, with the
2EFG calculation tending to overestimate the intracular den-
sity in the small r region. But as expected, the 2EFG intracu-
lar densities rapidly converge on the exact results as the grid
density increases.

It is perhaps not surprising that the greatest error in the
6D 2EFG wave function, ��r1 ,r2�, occurs in regions of
space where r1 is close to or equal to r2 since this is where
the piece-wise constant approximation to the Coulomb ma-
trix elements �Eq. �7�� is most severe. Our approximation
that the electron-electron repulsion is averaged over a cube
around each grid point underestimates the magnitude of the
repulsion and thus overestimates the intracular density when
the electrons are in the same region of space. Despite the
appearance of this discretization error in the calculated in-
tracular densities, we are encouraged by the fact that the
discretization appears not to affect the quality of the calcu-
lated 2EFG electron density, 
�r�, which is what defines most
properties of interest of the system. Also encouraging is that
the discretization error can be made negligibly small by in-
creasing the density of grid points as shown by the conver-
gence of I�r� to exact results with increasing N. Given the
above, we believe our 2EFG method can be used to model
many-electron systems with quantitative accuracy.

B. Molecular test: Potential energy curves of the
sodium dimer

As a test of the applicability of our 2EFG method to a
molecular system, we consider the potential energy curves
�PECs� for the lowest two singlet states �X 1�g

+ and A 1�u
+�

and the lowest triplet state �a 3�u
+� of an isolated sodium

dimer molecule, Na2, which in the frozen-core approxima-
tion becomes an effective two-electron system.56 Calculating
the electronic states of Na2 is an interesting test of our 2EFG
method due to the importance of electron correlation in this
system: Na2 is unbound at the Hartree–Fock level.56 Further-
more, as in all diatomic molecules, static electron correlation
becomes increasingly important as the molecule is stretched.
Although we expect our CI-based method to work well in the
dissociation limit, does the piece-wise constant approxima-
tion in the electron-electron integrals give smooth PECs?
How well does a 6D cartesian grid do for a molecular system
with cylindrical symmetry? Unlike the harmonium system,
we have no exact solutions of the electronic states of Na2

with which to compare; however, we can compare our cal-
culated PECs to experimental results57,58 and to high-level
quantum chemical calculations.59

Within the frozen-core approximation, Na2 is comprised
of two classical Na+ cores and two valence electrons that we
treated using our 2EFG method. The electronic wave func-
tion of these electrons was expressed on a 6D grid with N
=28 �and Nd=48 in the dealiasing procedure described in
Appendix, Sec. 1� that spanned a simulation cell of 21 Å.
The length of the simulation cell was chosen to be large
enough to avoid artifacts in the PECs from the periodic
boundary conditions inherent in the use of the FFTs. The
interaction of the electrons and Na+ cores was treated as a
sum of two one-body Philips–Kleinman pseudopotentials
centered on each Na+ core.11 The classical interaction be-
tween the two Na+ cores was taken to be the Coulombic
interaction of two point charges �in other words, we ne-
glected short-range repulsion between the cores at the near-
equilibrium internuclear separations of interest�. Periodic
boundary conditions were not applied to any of the potential
energy interactions.

Since the singlet and triplet manifolds arise from differ-
ent Hamiltonian matrices in our 2EFG formulation �Eq.
�11��, the PECs for these manifolds were generated from
separate calculations. First we mapped out the Born–
Oppenheimer PECs for the lowest two states in the singlet
manifold of Na2 starting from a bond-length of R=2.2 Å
and reaching R=10 Å in increments in 0.1 Å. The dimer
was placed in the center of the simulation cell with its inter-
nuclear axis along the diagonal to minimize effects of the
periodic boundary conditions from the use of FFTs. Starting
from a randomly generated wave function, PARPACK was
used to iteratively find the lowest two energy eigenvectors in
the singlet manifold of Na2 at R=2.2 Å. Eigenvectors at
subsequently longer bond-lengths were iteratively found us-
ing the eigenvector at the previous bond length as an initial
guess. The whole process was then repeated for the lowest
state of the triplet manifold. For all the Na2 calculations, we
used a Chebychev polynomial transform with m=6 as de-
scribed in Sec. 2 of the Appendix.

Figure 2 shows the Born–Oppenheimer PECs for the sin-
glet X 1�g

+ �solid curve� and A 1�u
+ �dashed curve� states and

the a 3�u
+ �dot-dashed curve� triplet state as a function of the

sodium dimer’s bond displacement, R. The zero of energy is

4 6 10
R(Å)

0

1

2

3

E
(e
V
) X 1Σg

+

A 1Σu
+

a 3Σu
+

(3s+3s)

(3s+3p)

8

FIG. 2. Gas-phase Born–Oppenheimer PECs of Na2 calculated with the
2EFG method using N=28 for the lowest two singlet �X 1�g

+ �solid curve�
A 1�u

+ �dashed curve�� and lowest triplet �a 3�u
+ �dot-dashed curve��. The

dissociation limits are indicated on the right of the figure.
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taken to be the minimum of the X 1�g
+ PEC. To verify the

dissociation limits, we also calculated the electronic energies
of two infinitely separated sodium atoms using a one-
electron Fourier-grid method. These energies are indicated
with arrows on the right of the figure. The overall features of
the PECs in Fig. 2 are encouraging: the X 1�g

+ and a 3�u
+

states correctly dissociate to 3s+3s and the A 1�u
+ state cor-

rectly dissociates to 3s+3p. Furthermore all the PECs are
smooth, despite discretizing the electronic wave function of a
cylindrically symmetric system in a cartesian grid basis.

To assess the quality of our method, we also calculated
various spectroscopic constants of Na2 from the 2EFG-
generated PECs, which along with the experimental
values57,58 are summarized in Table II. Table II also lists
values obtained from the frozen-core pseudopotential
+valence CI calculations of Liu, Carter, and Carter,60 which
�although they use Gaussian basis functions instead of a grid
basis� are the closest in spirit to our 2EFG method. We note
that Liu et al. only studied the ground electronic state of Na2,
so for the excited states, we also compare our results in Table
II to the quantum chemistry calculations of Magnier et al.,
whose calculations are expected to be more accurate than
ours as they go beyond the frozen-core approximation by
including core polarization potentials �CPPs�.59 Finally, we
also note that the ground-state dissociation energy calculated
by Liu et al. is too small, a result that Liu et al. ascribe to the
small size of the basis set they employed in their
calculation.60

A quick examination of Table II shows that for the
ground-state �X 1�g

+� PEC, our 2EFG method is in good
agreement with experiment: all of the 2EFG-calculated spec-
troscopic constants are accurate to within �10%. Our spec-
troscopic constants also agree with Liu et al.’s theoretical
results.60 For the A 1�u

+ and a 3�u
+ states, we also find rea-

sonable agreement between our 2EFG results and experi-
ment. The fact that our 2EFG calculation correctly predicts
the features of the A 1�u

+ state shows that we can treat elec-
tronic excited states on an equal footing with the ground
state, as expected for a CI-based method. We note that the
calculations of Magnier et al. are in better agreement with

experiment than those from our 2EFG method.59 We do not
believe that the larger discrepancy between our results and
experiment points to a failing of the 2EFG method; rather,
we believe that this is a direct result of the need to include
CPPs to obtain quantitative accuracy for the alkali dimers, as
argued by Müller and Meyer.56 Although we could include
CPPs in our 2EFG method in principle, it would involve
introducing a two-electron core polarization operator �Eq. 5d
of Ref. 56� that scales as Nat

2 , where Nat is the number of
classical atomic cores in the simulation, thereby limiting the
method to small systems. Since our ultimate goal is to apply
the 2EFG method to study the dynamics in condensed phases
where hundreds of atoms must be simulated, we decided to
neglect core polarization. We thus view the 2EFG method
with our current choice of potentials as providing a qualita-
tively �and near-quantitatively� accurate description of the
bonding properties of Na2 that will be sufficient to study its
properties in condensed-phase environments, as we have ex-
plored elsewhere.12

IV. DISCUSSION

In this paper, we presented a new electronic structure
method based on a Fourier-grid representation of many-
electron wave functions: the 2EFG method. We showed that
a Fourier-grid representation, combined with an appropriate
grid-based quadrature to evaluate electron-electron repulsion
integrals, affords a very sparse matrix representation of two-
electron Hamiltonians. This sparseness allowed our method
to easily be parallelized and in Sec. 2 of the Appendix, we
demonstrate that it takes a modern desktop computer only
�20 s to solve the Schrödinger equation for the lowest state
of sodide in liquid THF, a problem that is equivalent to full
CI in a basis of 17 million Slater determinants. This speed
makes the 2EFG method suitable for use in a MQC molecu-
lar dynamics algorithm where the Schrödinger equation must
be solved at every molecular dynamics time step, as we dem-
onstrate in Paper II.

Our 2EFG method is not only highly efficient but it is
also highly accurate: our benchmark calculations on the har-

TABLE II. Spectroscopic constants for the lowest two singlet states and lowest triplet state of the sodium dimer
as calculated with our 2EFG method and obtained from previous calculations and experiment.

State Method
Re

a

�Å�
Te

b

�eV�
	e

c

�cm−1�
De

d

�eV�

X 1�g
+ 2EFG 3.27 0 136 0.676

Liu et al. �Ref. 60� 3.34 0 136 0.458
Magnier et al. �Ref. 59� 3.09 0 159.1 0.731

Experiment �Ref. 57� 3.08 0 159.2 0.747
A 1�u

+ 2EFG 3.89 1.84 110 0.962
Magnier et al. �Ref. 59� 3.63 1.81 117.5 1.03

Experiment �Ref. 63� 3.64 1.82 117.3 1.03
a 3�u

+ 2EFG 4.89 0.8919 33.0 0.0330
Magnier et al. �Ref. 59� 5.19 0.7089 23.9 0.0216

Experiment �Ref. 58� 5.09 0.7251 24.5 0.0216

aEquilibrium bond length.
bVertical excitation energy from ground state at equilibrium bond length.
cHarmonic frequency at equilibrium bond length.
dDissociation energy.
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monium atom showed that our 2EFG method gives millihar-
tree accuracy in electronic eigenvalues, even for modest grid
point basis sizes. We also demonstrated that the 2EFG
method can handle molecular systems by calculating the
PECs of the sodium dimer to a similar level of accuracy as a
full CI calculation that used Gaussian basis functions. How-
ever, unlike electronic structure methods based on Gaussian
basis functions, our 2EFG method can easily capture elec-
tronic wave functions that are localized away from atomic
cores, such as the CTTS states of atomic anions,11 as also
demonstrated in detail in Paper II. Although our 2EFG
method is both efficient and accurate, we do not claim that it
should replace traditional quantum chemistry approaches to
gas-phase problems, where the use of localized basis func-
tions is more optimal.

We close by noting that our 2EFG method could easily
be adapted to study other correlated quantum particles, for
example, positronium, in condensed-phase environments.
Another extension would be to treat systems with more than
two electrons. A brute force approach of directly applying
our Fourier-grid method to systems of more than two elec-
trons would be limited by a computational cost that scales
exponentially with the number of electrons. This limitation
may be alleviated to some degree by employing an adaptive
grid whereby grid points that do not contribute to the wave
functions of interest are removed from the calculation thus
reducing the size of the Hamiltonian matrix. A promising
alternative to the brute force approach would be to use in-
stead a limited number, Nwf, of two-electron wave functions
to form a set of direct-product basis states in which the
many-electron wave function, �
�, is expanded �e.g., a
four-electron wave function could be written as

���=�i
Nwf� j�i

NwfÂ��i��� j�, where Â is the antisymmetrizer and
��i� is the two-electron state i�. Since the electron-electron
Coulomb operator would couple direct-products differing by
no more than a single two-electron wave function, the many-
electron Hamiltonian would have an extremely sparse repre-
sentation in this truncated direct-product space. Assuming
that the construction of the Hamiltonian matrix is the com-
putational bottleneck, the method would scale as Nwf

2 N6 re-
gardless of the number of electrons. Although the inherent
truncation in the wave function means that electron correla-
tion will be treated approximately, we believe such an ap-
proach will be sufficiently accurate to study systems of many
electrons, while retaining all the benefits of using a Fourier
grid to represent the wave function.
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APPENDIX: ADDITIONAL IMPLEMENTATION DETAILS
IN THE 2EFG METHOD

In this appendix, we discuss how we improved the accu-
racy and efficiency of our 2EFG method with two standard
numerical techniques. The first improvement concerns the
removal of aliasing errors from the use of Fourier transforms.
The second improvement increases the efficiency of the
Lanczos diagonalization in our method with the use of a
Chebychev spectral transform.

1. Aliasing errors in Fourier-grid approaches

To understand why aliasing errors can arise in Fourier-
grid approaches, we rewrite Eq. �4� in reciprocal space:

�klkm�ĥ1��� = �2�/L�2kl
2

2
�̃l,m + �

l�

Ṽ�kl − kl���̃l�,m,

�A1�

where Ṽ�kl−kl�� is the reciprocal-space representation of the
potential energy operator. In reciprocal space, the potential
energy operator is nonlocal and must be represented by
�2N−1�3 reciprocal-space vectors �since both kl and kl� have
components that run from −N /2+1 to N /2�. Fourier-grid
techniques that use the same number of real-space grid
points as k-space vectors to represent the potential energy
operator41 are thus subject to aliasing errors. Of course, we
always expect aliasing errors to decrease as the density of the
grid increases �the large N limit�. However, we wish to keep
N as small as possible since the size of the basis in the 2EFG
method is N6.

Our approach to reducing aliasing errors is to store only
the single-electron potential energy operator �and not the
electron-electron Coulomb operator� on a denser grid of
�2N−1�3 grid points. This means that the wave function also
must be interpolated from N3 to �2N−1�3 real-space grid
points in electron 1’s coordinates when applying the poten-
tial energy operator. To achieve this interpolation, we use the
standard technique of FFTing the wave function to reciprocal
space, padding the reciprocal-space function with m zeros in
each dimension and then inverse FFTing to give an interpo-
lated real-space function on a denser grid of Nd=N+m points
per dimension. In practice, we need not always interpolate to
as many �2N−1�3 real-space grid points as Nd��3 /2�N �or
smaller� is often sufficient, as determined empirically by
convergence checks.

2. Chebyshev polynomial spectral transform

For our 2EFG method to be efficient, we require that the
Lanczos diagonalization converge in as few iterations as pos-
sible. In general, the convergence properties of Lanczos
methods are dictated by the distribution of eigenvalues; con-
vergence is fastest for well-separated eigenvalues at one end
of the spectrum.32 For most problems of interest, we will be
calculating only the lowest-lying eigenvalues. So, for opti-
mum efficiency in our 2EFG method, it is desirable that
these eigenvalues be well-separated from the rest of the spec-
trum. In this section, we show how we accomplish this
through the use of a spectral transform.
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Figure 3 shows the distribution of electronic energy ei-
genvalues for the two valence electrons of sodide in THF, a
system that we explore in more detail in Paper II. The Figure
shows that the low-lying eigenvalues of interest are much
more closely spaced than the highest eigenvalues, precisely
the opposite of the situation we desire for optimum effi-
ciency of the Lanczos method. The figure also shows a pat-
tern in the distribution of the highest eigenvalues: there is a
large energy gap between the highest eigenvalue and a clus-
ter of six lower quasidegenerate eigenvalues, followed by
another large gap to the next cluster of lower eigenvalues.
This pattern matches exactly the distribution of the highest
eigenvalues of the kinetic energy operator in a 6D-grid basis:
in other words, the high-energy part of the spectrum is domi-
nated by the kinetic energy operator. Since the kinetic energy
operator is the same for any two-electron system, we antici-
pate that the high-energy part of the spectrum from our
2EFG method will have the same features seen in Fig. 3 for
any two-electron system. If left unchecked, this could cause
problems for the convergence of the IRLM for low-lying
eigenstates.

To solve this problem, we have chosen to employ a spec-

tral transform, where instead of diagonalizing Ĥ directly, we

diagonalize a function � of Ĥ:61

��Ĥ���� = ���� , �A2�

where the eigenstates of ��Ĥ� are the same as those of Ĥ,

allowing the eigenvalues of Ĥ to be found from the Rayleigh
quotient:

E = ���Ĥ���/����� . �A3�

If the eigenvalues of interest lie in the interval �Emin,Ecutoff�,
then � is chosen such that the transformed matrix ��Ĥ� has
well-separated eigenvalues in the interval of interest, while
the eigenvalues in regions outside those of interest are com-
pressed.

One of the most commonly used spectral transforms is

the shift-and-invert �SI� function, �SI�Ĥ�= �Ĥ+�Î�−1, where
� is fixed at a value near the eigenvalues of interest.61 The SI
transform is not appropriate for our 2EFG method, however,

since unlike the Fourier-grid representation of Ĥ, �Ĥ+�Î�−1

has a dense matrix representation that cannot be compactly
stored.

For our 2EFG method, we have therefore chosen an ex-
act Chebychev polynomial transform,62 which is defined in
the interval of unwanted eigenvalues, �Ecutoff ,Emax�:

��Ĥ� = �
j=1

m

�Ĥ − � jÎ� , �A4�

where m is the order of a Chebychev polynomial,62 the roots
of which are

� j =
�Emax + Ecutoff�

2
+

�Emax − Ecutoff�
2

cos���2j − 1�/2m� .

�A5�

Use of the transform in Eq. �A4� amounts to simply applying
the Hamiltonian matrix m times per IRLM iteration and
therefore requires no additional storage. The choice of the
parameters m ,Ecutoff, and Emax is problem specific, however,
and may involve some experimenting to find the optimal
values. We found that a good strategy was to set Ecutoff 1.0
eV higher than the highest eigenvalue of interest �which in a
MQC MD scheme can be evaluated from the previous time
step�. We also found that Emax is well approximated by the
highest eigenvalue of the kinetic energy operator, Tmax, plus
a first-order perturbation theory correction involving the po-
tential energy. This makes sense since the high-energy part of
the spectrum is dominated by the kinetic energy operator:

Emax = Tmax + Vmax + r12 max
−1 , �A6�

where

Tmax = 2 � �2�/L�2kmax
2

2
, �A7�

Vmax = 2 � �kmax�V̂�kmax� , �A8�

and

r12 max
−1 = �kmaxkmax�r̂12

−1�kmaxkmax� . �A9�

In Eqs. �A6�–�A9�, kmax is the largest possible single-electron
k-vector in the grid-based wave function expansion. Since
Tmax and r12 max

−1 depend only on the size of the basis expan-
sion and the length of the simulation cell, these parameters
need to be calculated only once at the beginning of a simu-
lation. In principle Vmax is also constant throughout a MQC
simulation because matrix elements involving plane waves
are translationally invariant; however, since the potential en-
ergy operator is evaluated on a real-space grid, Vmax does
change slightly from time step to time step as particles move
relative to the grid points. We therefore evaluate Vmax every
time the potential changes �i.e., at every MD time step in a
MQC simulation� which amounts to taking a simple spatial
average of V�r� on the real-space grid, so that the actual
Chebychev transform we apply varies slightly from simula-
tion time step to simulation time step.

With the particular implementation of the Chebychev
polynomial spectral transform discussed above, per IRLM
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FIG. 3. Distribution of the eigenvalues for sodide in a single liquid THF
configuration. Only the ten lowest and highest eigenvalues are calculated so
there are breaks in the axes. Details of the simulation are given in Sec. II of
Paper II. For this calculation, the number of grid points and hence the
number of eigenvalues is N6=166=16 777 216.
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iteration, the Hamiltonian matrix is applied m times more
often than when diagonalizing the untransformed Hamil-
tonian matrix, where m is the chosen order of the polyno-
mial. There is thus a trade-off between reducing the number
of IRLM iterations by increasing m and reducing the number
of Hamiltonian matrix-vector products per IRLM iteration by
keeping m small. This balance is illustrated in Table III,
which shows the diagonalization time and total number of
Hamiltonian matrix-vector products to find the lowest elec-
tronic eigenstate of the two valence electrons of a sodium
anion in THF �the condensed-phase system that is the subject
of Paper II�, averaged over 10 MD time steps. At each time
step, the Lanczos diagonalization algorithm was initiated
from the converged wave function at the previous time step.
From this table we see that the diagonalization time is largely
controlled by the total number of matrix-vector products and
that both of these quantities have a minimum at m=4 for this
particular system. Table III also highlights the effectiveness
of the Chebychev polynomial spectral transform: there is
roughly a factor of four speed-up in calculating the ground
state of the transformed Hamiltonian �m=4� compared to the
untransformed Hamiltonian �m=0�. Use of the Chebychev
polynomial transform becomes even more important when
considering excited states, which often have near-
degeneracies in the Hamiltonian’s untransformed spectrum
that would otherwise cause slow convergence in the Lanczos
algorithm.32
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