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In this paper, we investigate the solvation dynamics of the weakly polar organic solvent tetrahydrofuran
(THF) via classical molecular dynamics simulation. We find that the relaxation dynamics of all of the rotational
and translational degrees of freedom of neat THF occur on similar time scales and have similar power spectra,
making it impossible to use spectral density analysis to discern which specific molecular motions are involved
in solvation. Instead, we probe the molecular origins of solvation dynamics using a nonequilibrium projection
formalism that we originally outlined in M. J. Bedard-Hearn et &l.Phys. Chem. 2003 107 (24), 4773.

Here, we expand this formalism and use it to study the nonequilibrium solvation dynamics for a model reaction
in THF in which a charge is removed from an anionic Lennard-Jones (LJ) solute, leaving behind a smaller
neutral atom. The solute parameters are chosen to model the photodetachment of an electron from a sodium
anion, Na — N&°, to compare to the results of ultrafast spectroscopic experiments of this reaction being
performed in our lab. We are able to explain the hidden breakdown of linear response for this system that we
uncovered in our previous work in terms of the dynamical properties of the neat liquid and the structural
properties of the solutions. In particular, our nonequilibrium projection analysis shows that four distinct solvation
mechanisms are operative: (1) a rapid relaxattos (700 fs) caused by longitudinal translational motions

that dramatically change the local solvation structure; (2) a slower relaxatro@0 fs) caused by diffusive
longitudinal translational motions that completes the transformation of the long-range-sallvtent packing;

(3) an early-time relaxationt < 500 fs) caused by solvent rotational motions that destabilizes the (unoccupied)
anion ground state via Coulomb interactions; (4) a longer time protesSq0 fs) caused by solvent rotational
motions thaincreaseghe solvation energy gap. This last process results from the LJ interaction component
of the solvent rotational motions, as the nonequilibrium dynamics bring smaller-dkfgen sites closer to

the excited solute in place of larger THRmethylene sites. Overall, the simulations indicate that nonequilibrium
solvation dynamics involves cooperative motions of both the solute and solvent and consists of multiple
competing relaxation processes that can affect the solvation energy gap in opposite directions.

I. Introduction model in molecular dynamics (MD) simulatiohsalthough
Drabowicz calculated a radial distribution function (RDF) with

a slightly different first peak position than Jorgensen’s. In
addition to the RDF, Drabowicz calculated the THF center-of-
mass and angular velocity autocorrelation functions. A second
MD study took advantage of Jorgenson’s model but reported
only the diffusion constarft. The authors in this study had
removed the partial charges (and therefore the dipole moment)

Tetrahydrofuran (THF) is an important organic solvent
employed extensively in synthesis and commonly used in
spectroscopic studies. Despite the importance of this solvent,
there have been surprisingly few computer simulations aimed
at understanding the dynamical solvation properties of THF on
the molecular level. Jorgensen and co-workers developed a
united atom (5-site) model for THF, and performed Monte Carlo . . . P
(MC) calculations to explore the static structural properties of from the TH_F m°|eCUIeS. N t_he|r calculan(_)n, soitis uncl_ear
both neat THE and of a sodium cation dissolved in THE. whether their reported diffusion constant is relevant to either

These researchers found that the disk-like THF molecules tend}:]elfs_irrr\]ulatgdHor expﬁliimental lfluﬁéThe third MDfstudy,l by .
to arrange in parallel-ring structures, or short chains, in the neat/1€'"ich and Hentschke, simulated segments of a polymeric

fluid, and that they form a near-square-pyramidal structure residue in qugid THF: As part of th[s study, the authors
around Na.2 Jorgensen and co-workers also explored the effects developed their own model for THF using a packaged software

of puckering of the THF ring and concluded that nonplanarity Program (AMBER), choosing their parameters to obtain a
or psuedorotation of the ring makes little difference to the diffusion constant that was as close as possible to the experi-
equilibrium structure of this fluid. mental value. Thus, Helfich and Hentchke’s model used very

In addition to Jorgenson’s MC-based structural studies, there differ_ent parameters than Jorgensen's. In t_heir conclusions,
have been a few limited computational studies of the dynamical Helfrich and Hentschke noted only that the high symmetry of

properties of THF; we are aware of only four such investigations 1HF séemed to lead to a pronounced solvent structure; these
in the literature. The first, by Drabowicz, used Jorgensen’s authors did not calculate any dynamical quantities other than
the diffusion constant. Finally, and most recently, there has been
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SCHEME 1 motions of the solute and solvent molecules in response to a
small perturbation that takes the system away from equilibrium
are the same as those that follow from a natural equilibrium
fluctuation of the energy gap; in this limit, one can show that
S(t) = C(t).11 Experimentally, the dynamics of spectral diffusion
measured in transient hole burning experiments is assumed to

N be simply related teC(t).12
_ _ - ) In most (but not a*19 simulations of solvation dynamics
attempting to simulate a specific experimental sohfefliese  in which the excited state of the solute involves a charge

workers used a variety of different force field. parameters 10 redistribution,(t) and C(t) are found to agree, implying that
model THF and calculated some thermodynamic properties andmost such systems fall within the limit of LR. However, LR is
the diffusion constant for each model. However, none of these gpserved to fail when the excitation of the solute involves a

previous MD or MC calculations has provided the level of change in size or shapéThis is because the change in solute
analysis of THF needed to understand the dynamical behavioryglume upon excitation drives nearby solvent molecules into
of this important organic solvent. _ locations that they never explore at equilibrium (in the case of
Our interest in the dynamical properties of THF stems from 5 sjze decrease) or excludes nearby solvent molecules from
recent ultrafast spectroscopic studies in our lab investigating space that was formerly accessible at equilibrium (in the case
charge-transfer-to-solvent (CTTS) reactions in this solV@r  of 5 size increase). This means that when size changes are
experiments have focused on the dynamics of the photodetachinciyded, the solvent samples a different configuration space at
ment of electrons via CTTS excitation of sodium anions equilibrium than it does away from equilibrium; therefore, the

(Scheme 1). Because the sodium anion CTTS system has onlyaquilibrium and nonequilibrium relaxation dynamics need not
electronic degrees of freedom (the reactants and products arge the same.

either single atoms or solvated electrons), the charge transfer
dynamics are determined solely by the motions of the sodium
atom and the surrounding THF solvent molecul@hus, the
purpose of this paper is to gain better insight into the dynamical
properties of THF as a solvent via MD simulation. In the results
presented below, we will investigate both the properties of the
equilibrium fluid and the nonequilibrium solvation dynamics
resulting from the ionization of a sodide-like solute in THF.
The chief quantity of interest in solvation dynamics is the
solvation energy gapAE = E®¢ — E9"d where E®*¢ and E9
are the solutesolvent interaction energies when the solute is
in the excited and ground states, respectively. The normalized
nonequilibrium solvent response functids(t), is defined by

Of course, it is always possible that a situation arises where
the equilibrium and nonequilibrium relaxation dynamics of a
system are different but occur on similar time scales, so that
S(t) agrees withC(t) by coincidence, but LR does not hold. In
recent work, we presented a preliminary MD exploration of the
LR approximation for a negatively charged solute in THF that
undergoes the loss of its charge and a decrease in size (Scheme
1).1>We found a rough agreement betwesét) andC(t) despite
the fact that the simulated solute perturbation included a
significant decrease in solute size. We then showed how to
project the nonequilibrium solvation dynamics onto any mo-
lecular coordinate of the systeth,and we compared these
nonequilibrium projections to projections of the equilibrium
— — dynamic$®1” based on Steele theoly.We found that even
= AE(R'Y) — AE(R) (1) thoughS(t) agreed fairly well withC(t) for this system, the solute
A_E(R;O) — A_E(R;oo) and solvent motions underlying the relaxation dynamics for the
equilibrium and nonequilibrium processes were completely
whereR denotes the positions of the solute and all of the solvent different. We concluded that there was a hidden breakdown of
molecules and the overbar represents a nonequilibrium ensemblé-R for this solute-solvent system because it was not im-
average in which the solute is promoted to its excited state at mediately obvious from the comparison &ft) and C(t) that
t = 0. Equation 1 is normalized to begin at 1 and decay to 0 LR fails.
after the system has equilibrated around the excited-state solute. |n this paper, we extend our analysis of the details underlying
Thus, St) determines the rate at which the solute and solvent the dynamics of this particular solutsolvent system that
relax to accommodate changes in the electronic or structuralexhibits a hidden breakdown of LR. We also present detailed
properties of the solute resulting from excitation. Experimentally, analyses of both the dynamical properties of Jorgensen’s model
() is assumed to be simply related to the relaxation time scalesof THF and the nonequilibrium solvation dynamics of an atomic
observed in time-resolved fluorescence (Stokes $Hifor solute in this model of THF. In particular, we explore the
photon echo spectroscopi®s. relationship between the structural and dynamic equilibrium
One of the primary tools used to study solvation dynamics properties of THF and the mechanism of nonequilibrium
is the idea of linear response (LR), which is based on the solvation. We begin in section Il by describing the computational

S0

Onsager regression hypotheSisin the LR limit, t) is methods used in our MD simulations, and then present the
equivalent to the equilibrium solvation time correlation function  results of equilibrium simulations in section 1. In section IIL.A,
(TCF)811 we show our results for neat THF and in section 1ll.B, we
discuss the equilibrium simulations of solutions of both sodium
c(t) = [BAE(0) OAE(t)T] @) and sodide in THF. Section 1V is divided into three parts: part
EﬂdAE)le A discusses the formalism we use to project the nonequilibrium

solvation energy gap onto solute and solvent molecular degrees
where the angled brackets denote an equilibrium ensembleof freedom, part B presents the results of nonequilibrium MD
average andAE = AE — [AE[is the equilibrium fluctuation simulations modeling the ionization of a sodide-like solute in
of the energy gap (and the dependence is repressed). The THF (Scheme 1), and part C provides a molecular picture of
equilibrium solvation correlation functiorG(t), measures the  the solvation dynamics in this model soldteolvent system.
persistence of memory of the energy gap. In the LR limit, the In section V, we address the reasons why LR breaks down in
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TABLE 1: Lennard-Jones and Coulomb Potential
Parameters for the Solute-Solvent Systems Studied in
This Work (Eq 3)2

o (A) e x 10721 (J) q(e)
Oxygen 3.0 1.18 —0.5
o-methyl 3.905 0.82 +0.25
p-methyl 3.905 0.82 0.0
Na&° 3.14 14.7 0.0
Na~ 5.21° 3.10 —-1.0

a All parameters taken from ref 1 unless otherwise notdgstimated
from various sources.Calculated from ref 23; see text for details.
d Calculated from ref 24; see text for details.

the face of the seeming agreement betw8gnhand C(t), and
we offer some concluding remarks.
II. Computational Methodology

All of the simulations discussed in this paper consist of
microcanonical (constar, V, N) molecular dynamics (MD)

Bedard-Hearn et al.

interactions, we used the solute and solvent Lennard-Jones
parameters listed in Table 1 and the standard LoreBezthelot
combining rules? The ground-state solute also contained a
charge of—ethat interacted by the Coulomb potential with the
partial charges on the oxygen anemethylenes of each THF
solvent molecule.

Starting from an fcc lattice, we equilibrated the neat solvent
and the solute solvent systems with velocity rescaling for 50
ps, followed by at least 10 ps of additional equilibration. We
then ran a neat solvent trajectory for 100 ps, and ran equilibrium
solution simulations-one with the anionic solute and one with
the neutral solutefor 200 ps each. We also ran 400 nonequi-
librium trajectories, each of 12 ps duration. Because the
nonequilibrium solvation dynamics were completed in only a
few picoseconds, running to 12 ps allowed us to ensure that
the system had fully equilibrated around the neutral excited state.
The nonequilibrium simulations were started by choosing
uncorrelated configuratio®s from the ground-state (anion)
equilibrium run and instantly removing the charge and changing

simulations of an atomic (Lennard-Jones) solute and 255 THF the | ennard-Jones parameters to those of the excited state
solvent molecules (or 256 THF molecules for simulations of (neytral). Each initial configuration provided the starting points
the neat solvent). The equations of motion were integrated usingfor two nonequilibrium trajectories: one in which the velocities

the Verlet algorithr®® with a 1 fstime step. The simulation
cell had a density of 0.8892 g/értthe same as the experimental
fluid at 295 K), corresponding to a cubic simulation box

32.5 A on a side. The system had an equilibrium temperature

were kept unchanged, and another in which the velocities were
reversed. To mimic a resonant absorption, the starting configu-
rations were chosen by requiring the solvation energy &p,

to be within 0.75% of the equilibrium average. The temperature

of ~298+ 5 K. In all cases the total energy was conserved t0 of the equilibrium solution simulations did not change noticeably

better than 0.001%.

from the neat solvent simulations, but the nonequilibrium

_The THF solvent molecules were modeled using the five- cajculations saw an increase in temperature of about 8 K
site (unified methylene groups) potential introduced by Jor- following excitation of the solute.

gensen, which has partial charges on the oxygen and two

o-methylene site$.We used a modified SHAKE algorithih
to keep the molecules rigid and planar. The-siie interaction

potentials in this model are a pairwise sum of Coulomb and
Lennard-Jones terms, such that the interaction between any two

sites,i andj is

_ 1 499
Uy (ry) = . + 4

®)

AN

wherer; is the distance between thih andjth sites, which

could be any of the solvent sites or the Lennard-Jones solute;
the solvent parameters of Jorgensen’s model are listed in Tabl

1.1 The site-site potentials of eq 3 were further modified by

including a center-of-mass tapering function that smoothly
brought the potential to zero over a distance of 0.5 A with a

final cutoff radius of 15.9 &R122We found that when we used

a site-based cutoff (either strict spherical or tapered) for the
potential instead of the center-of-mass-based cutoff, the solvent

unnaturally froze. Minimum image periodic boundary condi-

tions'® were used throughout the simulations except for the

calculation of the diffusion constant.

For the solute, we chose potential parameters to model the
conversion of a solvated sodium anion into a solvated neutral

[ll. Equilibrium and Nonequilibrium Solvation Properties
of THF

In this section, we set the stage for our exploration of the
molecular motions involved in nonequilibrium solvation by first
examining some of the equilibrium properties of both neat THF
and THF solutions. We also present both equilibrium and
nonequilibrium solvent response functions and we discuss the
reasons why the LR approximation might be expected to break
down following excitation of our atomic anion solute.

A. Equilibrium Structure and Dynamics of neat THF. The
static structural and thermodynamic properties of this model of

CTHF already have been explored in the MC simulations of

Jorgenson and co-worke¥8.The advantage of MD over MC
simulations, however, is that MD provides information about
dynamic properties, such as time correlation functions and the
diffusion coefficient. We begin by investigating one of the
simplest equilibrium dynamical properties of the system, the
rotational dynamics of the THF molecules, which are explored
in Figures 1 and 2. Figure 1 shows the normalized orientation
autocorrelation function

(1) = W()-a(0)0 (4)

sodium atom, as a simple imitation of the femtosecond experi- for a unit vector,(, that lies either in the plane of the THF
ments studying charge-transfer-to-solvent reactions being per-molecule, s (spinning, solid curve), or perpendicular to the

formed in our lab’ All of the solute parameters also are listed

plane of the THF ringfu and Oy (tumbling, dashed curve,

in Table 1. For the excited-state solute (neutral), we used acalculated as the sum of both tumbling rotations and tumbling

sodium-sodium Lennard-Jones well deptheof= 1.47 x 10720

cross-terms), as depicted in the inset to Figu?é The relax-

J, and we estimated the size of the excited-state solute to beation times for the orientation autocorrelation functions were
close to that of a sodium atom. For the ground-state (anion) twmne = 1.9 ps andrspin = 1.6 ps, which we determined by

solute, we used a sodigdsodide size based on the crystal
structures of sodide salts obtained by Dye et?%nd we used
Edwards’ polarizability measuremefitto estimate the sodide
sodide well depth. For the solutsolvent Lennard-Jones

fitting the curves to single exponential decays (not shat@n).
Figure 2 shows the velocity autocorrelation (VAC) functions,

A(t), for the center-of-mass velocity (solid curve) and the angular

velocities for the spinning (dotted curve) and the sum of the
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Figure 1. Equilibrium angular orientation autocorrelation functions,
Y(t) (eq 4), showing the spinning (solid curve) and tumbling (dashed

o
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Figure 3. Solvent response functions for different sodium and sodide

curve) degrees of freedom for neat THF. The inset shows the three simulations in THF.S(t) (solid curve, eq 1) is the nonequilibrium

rotational degrees of freedom for this model. The tumbling correlation
function includes both tumbling directions and the tumbling-tumbling
cross term.
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Figure 2. Equilibrium velocity autocorrelation functions (VAC(t)
(eq 5), for neat THF. The spinning (dotted curve) and tumbling (dashed

curve) motions are defined as in the inset to Figure 1. The inset shows

the power spectrum for each of the VACs, indicating that the center-
of-mass translations (COM, solid curve) and spinning and tumbling
rotations span similar frequency ranges.

response when the anion is instantly changed into the neutral (see
Scheme 1), calculated from 400 nonequilibrium trajectoriegt)
(dashed curve, eq 2) is the equilibrium solvation response when the
solute is neutral sodium and the unoccupied solute state is the anion.
C_(t) (dotted curve, eq 2) is the equilibrium solvation response when
the solute is the anion the unoccupied excited-state solute is the neutral.
Both equilibrium solvent response functions were calculated from 200
ps trajectories. The error bars shown are two standard devidfions.

by their time scale or by spectral density analy$i® It is for

this reason that we have elected to explicitly project the
dynamics of specific solvent motions, as detailed below in
section IV.A.

Finally, to close our exploration of the equilibrium dynamical
properties of this model of THF, we have calculated the value
of the self-diffusion constant using the Einstein equdflon
for the mean-square displacement of the center of mads=6D
Or (t) — r(0)|3, wherer (t) is the position of the center of mass
at timet. The experimental diffusion coefficierey, = 3.5 x
1075 cné/s b is somewhat higher than the one we calculated for
this model D = 2.88 x 1075 cn¥/s, suggesting that Jorgensen’s
model may overestimate the tendency of this solvent to stack

tumbling (dashed curve) degrees of freedom. The VACs were and cluster.

calculated using

@()-uO)0l

A= w20

®)

whereu(t) is either the center-of-mass velocity, or the spinning
or tumbling angular velocitie¥P28 Although the orientation
autocorrelation functions decay on thd—2 ps time scale, all

of the VACs have ¥ decay times 0f-0.25 ps. We note that

in the MD calculations by Drabowiczthe time ordering of
the center-of-mass and angular velocity time correlation func-
tions is reversed from what we show in Figure 2. We believe
that this may be the result of an incorrect labeling of the curves
in Figure 4 of ref 3. The featureless relaxation of the VACs in
Figure 2 is similar to that observed for other weakly polar planar
molecules, such as benzefleWe believe that the slow
relaxation of the orientational time correlation functions is the
result of steric hindrance due to packing of the solvent
molecules; the solvent VACs all show a significant negative
region, indicating that THF has limited mobility due to strong
solvent caging.

B. Solvation Dynamics and the Equilibrium Structure of
Atomic Solutes in THF. In this section, we discuss the
dynamical properties of solutions containing an anionic or
neutral atomic solute. In the LR approximation, the sotute
solvent interactions are characterized by the equilibrium sol-
vation response functiorC(t), eq 2. Figure 3 shows the
equilibrium solvent response for the anionic sol@e(f), dotted
curve), which is the ground state for the nonequilibrium
simulations, and the equilibrium solvent response for the neutral
solute Co(t), dashed curve), which will be the excited state for
the nonequilibrium simulation®.The solvation energies of the
unoccupied excited states were calculated using the neutral
solute interaction parameters for.(t) and the anionic solute
interaction parameters f@y(t). Also shown in Figure 3 is the
nonequilibrium solvent respons&t) (solid curve, eq 1),
calculated from 400 nonequilibrium trajectories in which the
solute simulation parameters were switched from those of the
anion to those of the neutral, mimicking electron photodetach-
ment from a sodium anion. In the limit of LR, we would expect
the equilibrium solvation time correlation functions for the anion
and neutral simulations to be the same. Because the two

The inset to Figure 2 shows the power spectrum for each of equilibrium response functions are clearly different, we antici-

the velocity autocorrelation functions, all of which are charac-
terized by a large broad band between 0 and 200'cithus,

not only does the memory of molecular rotations and translations

persist for similar times, but the underlying motions occur in
similar frequency ranges. This makes it nearly impossible to
distinguish the solvent motions that are involved in solvation

pate that LR will break down for the nonequilibrium perturbation
that converts the anionic solute into the neutral solute.

At the earliest timesSt) and C_(t) are almost identical,
although there are small deviations at later times. (In fact, the
differences betwee@_(t) and Cy(t) would not ordinarily deter
us from invoking the LR approximation given how similar the
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TABLE 2: Properties of the Equilibrium (Eqgb) and Nonequilibrium (Negb) Solvation Response Functions, as Well as the
Structural Properties of the Anion (Ground State) and Neutral (Excited State) Solutions at Equilibriun?

7, fs [EsLP KT solvation energyksT [AEL),C kT Qo—com(r),4 A Jo—oxy(),4 A
(Eqb)Anion 135+ 170 ~90 ~1f ~T 5.7 6.3
(Eqb)Neutral 63t 6° ~15 ~45 ~105 4.7 3.8
(Negb)Na — N&° 259 n/a ~180 n/a n/a n/a

a All equilibrium quantities were calculated from 200 ps simulations. The nonequilibrium data were calculated from the 400 trajectories, each of
12 ps duration® The average solutesolvent interaction energy, as defined as in the teXhe average equilibrium energy gapa\EL] =
[fanion — Eneutral) = [franio] — [Ereural] for the simulations with the anionic solute and neutral soltE&°is the average anion solutsolvent
interaction energylE"*u"a[s the average neutral solutsolvent interaction energy, amdndicates whether the equilibrium dynamics were performed
with the neutral or anionic soluté First peak distance for the soluteolvent center-of-mass (0-com) or solumlvent oxygen site (0-oxy) radial
distribution function. Calculated from a 200-ps trajectory as = —d?C(0)/dt> = —G(0)/[dAE[I(see ref 16a); the error is 2 standard deviations.
fThe solvation energy for the equilibrium simulations is the root-mean-square of the average fluctuations of the ena¥yegd(?, 9 The average
energy gap for the ground state (anion) corresponds to the average energy of the perturbation in the nonequilibrium trajectories. In an experiment,
this would be the excitation energyCalculated by fitting the first 30 fs di(t) to a parabola and using? = —d*S(0)/dt2. The error we report is
for the parabolic fit,R2 = 0.9995.' The solvation energy for the nonequilibrium simulations=2AE(0) — AE(x) is the Stokes shift energy;
see text.

nonequilibrium solvation responsg(t), is to C_(t).) The fact 4 - (@) Solute-Solvent
that S(t) and C_(t) agree at early times is what might be COM
predicted from LR. This is because immediately after excitation ~ 31 — Anion
of the solute, the inertial solvent motions are expected not to ks all | - . Neutral
change from those when the solute was still in its ground state. 2 )

On the other hand, at longer times the solvent is approaching 1 !

equilibrium around the excited-state (neutral) solute, so the long- i '

time behavior ofyt) should resembl€(t) rather tharC_(t).8-%a )

In a previous paper, however, we showed using the method of 0 ' Solvent
projections (see section IV.A, below) that the solute and solvent 2 (b) SO'”te‘oxygen
motions underlyingS(t) and C_(t) are completely different, = \

including at the earliest times where the inertial dynamics are o 14

expected to be similar. In particular, we found that the inertial

part of the equilibrium responsé&_(t), was predominantly 0

composed of solvent rotational motions, whereas the inertial 0

part of the nonequilibrium relaxatiort), resulted almost
entirely from solute-solvent center-of-mass translatiofig.he
characteristic inertial solvation times for each of the response Figure 4. Equilibrium solute-solvent radial distribution functions for
functions shown in Figure 3 are summarized in Table 2. the anionic (solid curves) and neutral (dashed curves) solutes. (a) shows
Table 2 also summarizes the average solvation energies andn€ Solute-solvent center-of-mass distributions and (b) shows the
the average solvation energy gapsEL) — LEanion — Eneutral | solute-solvent oxygen site distributions. The first peak distances are

G ' : . summarized in Table 2.
for each of the equilibrium simulations, where = anion R ) ] )
(neutral) indicates dynamic calculations involving the anionic "adial distribution functions (RDF¥, g(ros), which give the
(neutral) solute. Note that our nonequilibrium trajectories were Probability of finding a solvent molecule (or site)at a given
launched from starting configurations chosen so that thed distance from the solute (denoted by 0) in Figure 4. Panel a
nonequilibrium energy gap was within 0.75% of the average shows the _solutes_olvent center-of-m_ass RDFs for both the
energy gap for the anion-solute system; that@SEdnon = ground- (anion, solid curves) and excited-state (neutral, dashed

AE(0). Table 2 also compares the root-mean-square equilibri- curves) solutes, f"md panel b sh.ows the correspondin.g solute
um energy gap fluctuationBAE2¥2 to the total nonequilibrium solvent oxygen site RDFs; the distances for all of the first-shell

. D — — solvent peaks are listed in Table 2. Figure 4 makes it clear that
energy relaxation (Stokes Sh'ﬁ)‘l.% A.E(O) ~ AE(x), whe_re_ the ground- and excited-state solutes impose very different local
A is known as the solvent reorganization energy. In the limit of o ent structures; in fact, the different solute sizes lead to more
Imgar response, We.would expect the npneqwhbnum Stqkes THF molecules packed around the anionl or 13) than
shift to be proportional to the magnitude of the typical 6 nd the neutral solute-8 or 9). The large difference in first-
equ|I|2br|L11m fluctuations of the solutesolvent energy gap,  ghe| distances is consistent with our previous paperhere
[OAEZLP we concluded that center-of-mass translations contribute sig-

) nificantly to the nonequilibrium solvation dynamics.

[DAETE= 22kgT (6) Although the significant reorganization of solvent molecules

(when the solute switches from anion to neutral) explains why
The fact that the nonequilibrium relaxation is so much larger translations dominate the nonequilibrium solvation response, this
than what would be expected from the size of the anionic solute reorganization also allows us to rationalize why translational

equilibrium fluctuations provides another indication that LR maotions contribute so little to the solvation dynamic<in(t).1®

should fail, making the apparent agreemengof andC_(t) in The influence of solute or solvent fluctuations on the solvation
Figure 3a all the more surprising. energy gap not only comes from modulation of the occupied
As we will show below, it is possible to understand both the state but also results from modulation of the unoccupied state
coincidental agreement betweg) andC_(t) and many of the (in the case of the anionic solute, the unoccupied state is the
details of solvation dynamics in THF in terms of the local small neutral atom). Typically, large fluctuations of the energy
solute-solvent structure. Therefore, we present schs®lvent gap occur only if a particular solute or solvent motion causes
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(a)c 0.6 - - V. Noneqyilib_rium Solvation Dynamics of the Na— —
S I I I Na° Reaction in THF
g ) i In this section, we review our new method for projecting out
L the contributions of different solute and solvent molecular
G 0.5~ i i motions onto the solvation energy gap. We then use these
f) —2anion | == projections to explore the molecular details of nonequilibrium
7 1 - - neutral i solvation dynamics in THF, with an eye toward building a
i_l’=_ [ molecular understanding of why LR breaks down for this
0.4 T solute-solvent system despite the apparent similarity of the
1J272 0 -I272 41 equilibrium and nonequilibrium solvent response functions.
cos(6) A. Method for Nonequilibrium Molecular Projections. In
] ‘ previous work, we were able to uncover the hidden breakdown
(b) RegionIl .~ of LR for our solute-solvent system by directly comparing the
: '~ Dipole motions responsible for equilibrium and nonequilibrium solva-

‘\ '
@ & 7 tion dynamics inC_(t) and S(t).1®> To determine how specific
molecular motions coupled to the equilibrium solvation energy
I: Towards .- III: Away gap, we used St.eele thedfis .and. we developed a new
- Region IT"*, formalism to project the contribution from any degree of
) e T ] freedom onto the nonequilibrium solvation energy ¢dginally,
Faure S (o) Eauilbru anguldribuion uncions for e neuta_we presented a new way to analyze the dynamics underying
ﬁistograml:s n())rmalized to tr(1e numlt;er gf soLIJven.t molecuielsg(for }b(t) andS(t) by integrating the projgcted derivatives’. providing
the neutral solutex~13 for the anionic solute) within 7.5 A of each ~ POth a direct measure of the magnitude of the coupling between
solute?® We have binned the THF dipole orientations to lie within one @ solute or solvent degree of freedom and the solvation energy
of three regions defined by the dashed lines in (b): pointing in°a 90 gap and a means for extracting the time scale for relaxation of
cone toward the solute (region I); pointing tangential to the solute that degree of freedoA¥.Here, we briefly review our method
(region 1), or pointing in a 9B cone away from the solute (region I1l).  for projecting the molecular contributions to nonequilibrium
solvation dynamics.

the energy of the ground and excited states to fluctuate in Using the chain rule for diff it ite the rat
opposite directions. For our solute, the ground-state anion is so sing the chain ruie for ditferentiation, we can write the rate
of change of the total solvation energy ga\, as

large that solvent molecules cannot translate close enough to

modulate the energy of the unoccupied neutral excited state. . do 9AE .
Therefore, translation-based fluctuations cannot couple strongly AE= ) ——= ZAEa = ZJa(t) (7
to the solvation energy gap. This also means that all fluctuations o dt oo o o

of the energy gap are effectively fluctuations of only the anion
solvation energy, and at equilibrium these fluctuations must have
a magnitude of-ksT. As it turns out, the equilibrium solvent
motions that most strongly modulate the energy of the anionic
solute are rotations that reorient the THF diptle.

Finally, before turning to the molecular details of the
nonequilibrium solvent relaxation, we note that Jorgensen and _ . . -
co-workers have studied the thermodynamics and equilibrium G(t) = Z ;mEa(t)'AEﬂ(O)D: z ; _Caﬁ(t) (8)
packing of THF around a charged Lennard-Jones particle that ¢ *
modeled a sodium catichBy studying the solutesolvent By integrating eq 8 twice with respect to time, the contributions
interaction energies and soluteolvent RDFs, Jorgenson and  from the degrees of freedomand, Cup(t), to the equilibrium
co-workers discovered that the first-shell THF molecules interact solvation TCF (eq 2) can be explored separately. This type of
very strongly with sodium cations, which impose a rigid local analysis has been used to study how molecular rotations,
solvent structure with the THF oxygen atoms pointing toward translations, and rotation/translation coupling drive equilibrium
the cation. In contrast, this type of rigid imposition of solvent splvation dynamics in both polar and nondipolar solvéfis.
orientational order does not occur with either our anionic or  To investigate the molecular contributions to nonequilibrium
neutral solute. This is demonstrated in Figure 5a, which displays solvation dynamics, we rewrite the total nonequilibrium solva-
angular distributions of the first-shé&llsolvent dipoles around  tjon velocity response functiod(t) (eq 7), in terms of a specific
the ground- (anion, solid lines) and excited-state (neutral, dashedcomplete set of projections: the solute and solvent site Cartesian
lines) solutes. Our geometry convention is illustrated in Figure coordinates. Thus
5b, with 6 defined as the angle between the solvent dipole and .
the vector pointing from the solute to the solvent center-of- _ : T — S B B .
mass. In particular, we see that the distribution of solvent dipoles 0 ZAE(R‘O’O Z[R” Rio = foRAE R0 (92)
around the neutral solute is essentially uniform, whereas the
distribution of solvent dipoles around the anion shows a small where the sum over runs over all solvent site®,, represents
amount of local order, with a slight preference for the negatively the solvent site positionsy is the solute positionR.o = R, —
charged THF oxygen site to point away from the anionic solute. ro, R = R/R, AE(R,) is the solute-solvent energy gap\E'(R.0)

On average, this amounts to less than one additional first-shellis the derivative oAE with respect tdR,o, and it is understood
THF oxygen site pointing toward the neutral than pointing that the entire last expression is calculated as a nonequilibrium
toward the anion. This detail turns out to be important in ensemble average. Equation 9a contains the same information
understanding the nonequilibrium solvation dynamics of this as eq 7, but the sum overin eq 7 is replaced by the sum over
solute-solvent system, as we will discuss below in section IV.B. the solvent degrees of freedoR), plus the solute degrees of

where the sum on runs over all degrees of freedom, the over-
dot denotes a derivative with respect to time, and we have
definedJ,(t) as the velocity projection onta. For equilibrium
solvation dynamics, molecular information is contained in the
solvation velocity TCF,
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freedom (o). In addition, it is straightforward to integrate any (a) — S0
one of the projected nonequilibrium velocity response functions, 1.0 . StOt(t)
Ju(t), back to a projected solvation response funct®t); we S’ of (o)
have discussed the advantages of using the integrated projections 0.5\, == S"”:(%)
in previous work!>34We thus define the normalized nonequi- . la
librium projection onto a degree of freedomas 0.0 ~
o
1 ., OAE( 1 pt, - 1)
S0 =5; Joodt) 8(1( ) dt = JoAE(t) dt = S
; Q
[y ) ot (9b) @
o
where Jy(t) is the solvation velocity projection onto the =
coordinatea. from eq 7,4 is the solvent reorganization energy ()
(eq 6), and likeJu(t), the integrands in the middle two % 0123 45
expressions are calculated as nonequilibrium ensemble averages. N o951 © = = Ssowent(t)
Unlike the equilibrium projection<Ca4(t),'° the projected ) ween glrans
S(t)’s in eq 9b do not contain cross-coordinate terms. Thus, Seoputel)

we take the second time derivativeME to obtain the solvation

acceleration response function, which is the closest nonequi- 0.0 =C5ave
librium analogy to G(t).3> The total solvation acceleration -0.25 | | | |
response functiorB(t), is given by 0 2 4 6 8
L d d Time (ps)
—B(t) = AE(R#o;t) =—J@t) = Z—[R#O-Q”OAE'(RMO)] = Figure 6. Projections (eq 9b) of the nonequilibrium solvation energy
dt m dt i gap (averaged over all 400 nonequilibrium trajectories) for the reaction
1 studied in Scheme 1. (a) shows the integrated projections for THF
AE (RﬂO) :
[AE'(R )f( ]-F'Q + % rotations Gotlt), das_hed curve), for solutesolvent center-of-mass
Z w077 *u0l "0 longitudinal translationsSeng(t), dask-dot curve), and for solute
# H0 solvent center-of-mass lateral translatio8g(), thin solid curve). (b)
. . _ [AE(R) ) . displays the projections onto the Coulon®,(t), dotted curve) and
R0 2_R o'| Ruo -+ AE'(R 0) R,ol"R.0 (10) Lennard-Jones §4(t), dotted curve) parts of the solutsolvent
" “ “ “ “ “ interaction. (c) shows the integrated projections onto motions of only

0
" the solvent Gowven(t), dashed curve), only the solut&dudt), solid

where, as with eq 9a, we have chosen to write the Bl curve), and onl}gnghe translational motions of the_“”ﬁfﬂﬁnﬂ),
explicitly as a sum of the projections onto the solute and solvent dotted curve).SGi (t) was calculated by subtracting the full rota-
center-of-mass Cartesian coordinates. In eq Ka= R, — tional projection Go(1), (&) from Swoven(()."” The total nonequiibrium

5 s . . . solvent response functio®(t), eq 4, thick solid curve same as solid
foandR.o = R, —Toare the relative velocity and acceleration urve in Figure 3) is shown for comparison in (a) and (b). Note the

terms, and as with eq 9 the last two expressions are evaluatedicale changes on both axes in the different panels. In (a) and (c), the
as nonequilibrium ensemble averages. We now define thecurves are calculated from eq 3bSq(t) in (a) was calculated by
normalized nonequilibrium projection onto any pair of scalar subtractingSong(t) and Sa(t) from Se(t).

coordinatesx and 3, S,4(t), by integrating twice?

however, the mass of our atomic solute is about one-third the
1 .t IAEL-  T9A mass of a solvent molecule, so we expect that solute translations
S = zﬁ)dt'/; dt” [a—]a + [a—lﬂ X will make an important contribution to the solvation dynam-
o o ) ics36:37 Because the solvation dynamics in egs 9a and 10a are
‘('x 2_ & d"AE B projected onto relative solute and solvent motions, it is
dodp straightforward to separate the solute contribution&Eofrom
1 pt,, ot ., those of the solveri In the next section, we use projections
Eﬂﬁ,dtﬂ,dt Bus(t") (10b) to understand the nonequilibrium dynamics and the hidden
breakdown of LR in these solute/THF systems.
where Bg(t) is the solvation acceleration response projected  B. Molecular Projections of Nonequilibrium Solvation
onto the coordinatea. and and the integrand in the second Dynamics.Figure 6 summarizes various molecular projections
expression is calculated as a nonequilibrium ensemble averageof the nonequilibrium solvation dynamics for the reaction
Except where specifically noted, we will use the word “projec- depicted in Scheme3P.The thick solid curve in Figure 6&q(t)
tion” to refer to the integrated projected solvation velocity or (eq 1), is the calculated nonequilibrium solvent response function
acceleration functions, egs 9b and 10b. for the reaction depicted in Scheme 1, which is the s&tle
In eqs 9a and 10a, the derivatives of the solvation energy shown in Figure 3. The dashed curve in Figure 6a shgws),
gap contain theelative solute-solvent velocities and accelera-  defined as the sum of all three projections of the solvation energy
tions; this emphasizes that solvation dynamics is a cooperativegap onto solvent rotations (see inset to Figure 1); the-ddsh
effort involving motions of both the solute and solvent. In many curve in Figure 6a showSeng(t), the projection of the solvation
simulations of solvation dynamics, however, the solute is chosenenergy gap onto solutesolvent longitudinal center-of-mass
to be infinitely massive so that solute translations cannot translations (i.e., the direction between the solute and solvent’s
participate in solvation dynamics. This approximation does have center of mass); and the thin solid curve sho8gt), the
some physical grounding, because the solutes in many solvationprojection onto the two lateral, or transverse, translations (i.e.,
experiments are large organic dyes that are 50 or 100 timessolute or solvent translations that do not change the selute
more massive than the solvent molecules. In our simulations, solvent center-of-mass distance§o(t) was calculated by
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subtractingSyandt) = Song(t) + Sa(t) from So(t). The large  to obtain the solvent-only translational projectic®que.(t),
contribution of center-of-mass longitudinal translations to the shown as the dotted curve in Figure 8¢This curve makes it
total solvation dynamics is as expected due to the large clear that the nonequilibrium translational motions of the solute
difference in the first solvent shell distances of the ground- and and solvent contribute about equally to the total translational
excited-state solute, as seen in the RDFs in Figure 4a. relaxation and thus to the total system relaxation (cf. Figure
Based on our reasoning in section IIl.B, the fact that 6a). We also can identify the small negative portion of
longitudinal translational motions play an important role in the g“"“s (t) as coming from the lateral translations of the solvent

I
total solvent response is easy to understand. However, the(a(é\grn cf. Figure 6a).

behavior of the rotational projection comes as a surprise for  Next we ask how the proximity of a particular solvent
several reasons. First, there is apparently a delayed onset of,gjecyle to the solute determines its contribution to the solvation
rotauona] co.upllng to the solvatllpn'energy gap; rotations make energy gap. Studies of other systems have shown that the
no contrlbutlon to the noneq_umbrlum so_lvaﬂon dynamlc_;s at golvation energy gap is modulated most strongly by the closest
early tlr_nes. S?Cond' the rotatlc_mal prol_ect|on shows tW9 distinct solvent molecule to the soludte*¢-44or by a collective effort of
relaxation regimes: an early-time regime=( ~700 fs) with a the 6-12 solvent molecules in the first solvation shéil*” To

negative slope, |nd|caf[|ng that rotational motions cause @ see how the nearby solvent molecules coupleSith in our
decrease of the solvation energy gap, followed by a slower . —
system, we calculated projections AE onto both nearest-

regime ¢ > ~700 fs) with a positive slope, indicating that - . 8 .
rotational motions at these times cause the solvation energy gag'€19hbor and first-shell solvent molecuf€s8ecause of diffu-
sion, the locations of solvent molecules change during the

to becoméarger. This means that solvent rotational motions 1t . e
during the second regime either stabilize the unoccupied anion"onequilibrium dynamics, so we calculated these projections
state or destabilize the newly created neutral solute (or both). USing two different methods. In the first method, we determined

The fact that a subset of the nonequilibrium solvent motions the identity of the nearest neighbor (or first shell) molecule(s)
can work to increase the solvation energy gap whereas the res@tt = 0, and calculated the contribution of these molecules to
work to lower it is highly counterintuitive, especially given that the solvation gap throughout the trajectory (even if the
this type of effect cannot be present in equilibrium dynamics. molecule(s) diffuse away from the solute at later times). In the
Finally, at long times, the rotational projection contributes second method, the identity of the nearest neighbor (or first
nothing to the overall change in the nonequilibrium energy gap, solvent shell) was updated at each time step, even if diffusional
even though at intermediate times solvent rotations modulate €xchange switched the identity of the molecules. The two
the gap in a nontrivial way. We will return to the question of methods gave dramatically different results for the nearest-
what causes this unusual behavior for solvent rotations below neighbor projection, which accounts for onl6% of the total

in section IV.C. relaxation using the first method but over20% of the

In addition to projecting the contributions of molecular reélaxation using the second. In contrast, we found little

motions, we can also explore how each portion of the pairwise difference between the two methods for the projection onto the
solute-solvent interaction potential contributes to the nonequi- first-shell solvent molecules, both of which indicated that the
librium solvation energy gap by dividing the energy into first solvent shell is responsible for80% of the total relaxa-
Coulomb and Lennard-Jones (LJ) partdE = AEq,, + tion.#? This leaves longer-ranged Coulomb interactions from
A_ELJ.“O The dashed curve in Figure §tshows the Lennard- solvent molecules beyond the first solvent shell to account for

Jones contribution to the solvent relaxatiBn(t), and the dotted the rema_un.lnngo%. of the tgtal _solvann dynam|c_s_. )

curve shows the Coulomb contributio®seu(t). The Lennard- C. Building a Microscopic Picture of Nonequilibrium
Jones projection shows relaxation on at least two distinct time Solvation Dynamics.How do all these different projections fit
scales: a rapid component at early times<(400 fs) and a  together to present a unified picture of the nonequilibrium
slower contribution at longer times (0.5 pst < 3 ps), each solvation dynamics for this system? In the previous section, we
with roughly equal amplitudeScou(t) shows a similar two-time ~ showed that longitudinal center-of-mass translations of the
scale behavior, although the rapid relaxation component ac-hearby solvent molecules are responsible for most of the
counts for~95% of the Coulombic contribution of the solvent relaxation dynamics and that the lateral translations (which
response. We note that analogous projections to these werelecayed on a separate time scale from the longitudinal transla-
presented in our previous wokbut the nonequilibrium average tions) contributed very little to the total solvation dynamics.
for the curves in Figure 6b was performed over twice as many Figure 6a showed that the contribution from solvent rotations
trajectories. also has two components: a short-time process that decreases

Figure 6¢ shows the projections of the solvation energy gap the solvation energy gap followed by a longer-time process
onto the motions of just the solute or solvent, as suggested induring which the solvation energy gap increases. Moreover, the
section IV.A%2 The figure shows clearly that solute motion is Projection of St) onto the LJ part of the solutesolvent

responsible for about half of the total relaxation dynanifcs. interaction potential (Figure 6b, dashed curve) showed two
Moreover, the total solvation response (solid curve) is fully different relaxation regimes. Finally, the bulk of the Coulomb
relaxed by~3 ps whereas botBsowen(t) and Ssoudt) do not projection (Figure 6b, dotted curve) relaxed on two more time

finish decaying for~8 ps. This shows that solvation dynamics Scales. Although it is not immediately obvious how rotations

is a cooperative effort of the solute and solvent: the full setute  and translations affect the solvation energy gap via the LJ and
solvent system can relax faster than is possible with motions Coulomb interactions, it is clear that there are at least four
by either the solute or solvent alone. In fact, previous calcula- different relaxation time scales: two rotational time scales plus
tions have shown that the ratio of the solute and solvent masse®ne longitudinal and one lateral translational time scale from
can determine the rate of solvati#fremphasizing the important ~ the projections in Figure 6a, or two Lennard-Jones and two
role of motions of the solute. Because for our atomic solute the Coulomb time scales from the energy projections in Figure 6b.
full rotational projection &q(t) in Figure 6a) can arise only  These time scales must correspond to at least four different
from the solvent, we subtracted this contribution fr8gen(t) mechanisms for the nonequilibrium solvation dynamics. This
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Figure 8. Projections of the nonequilibrium and equilibrium solvation

response functionsCo(t) (solid curve, eq 2, same as dashed curve in

Figure 3) is the equilibrium solvation response for the neutral solute

(and the unoccupied excited state is the ani@g).(t) (dashed curve)

is the Lennard-Jones projection @(t). S ,(t) (dash-dot curve, same

as dotted curve, Figure 6b) is the Lennard-Jones projection of the
10 15 nonequilibrium response function. The agreement betW@&et) and

oo (A) S;(t) at long times > ~1 ps) is not coincidental; rather, it indicates

that the dynamics fall within the limit of linear response; see text.

Difference

Figure 7. For the reaction of Scheme 1, (a) showing time-dependent
nonequilibrium solute/solvent center-of-mass radial distribution func- . . .
tions (RDF) and (b) showing the differences between the ground-state Of the entire solvent structure. This larger scale repacking does
(anion) RDF and the various time-dependent RDFs of (a). In both not begin to take place until after (most of) the new first solvent
panels, the = 0 (thin solid curves) RDF is calculated from the 200 ps  shell structure is complete, so that the slower translational
equilibrium trajectory with the anionic (ground state) solute. Likewise, relaxation component occurs on diffusional time scales. We
geut"i;ijg Etrg}‘;'étzcr’)','dv\ﬁt“r:"gfg ':]ZeDuFtrS (EZI)?CL:IIZEjedStg?eT tsr(‘)?utzgoTFl’fe believe that the delayed onset of this long-time translational
remaining curves are calculated by averaging over the 400 nonequi-rEpaCk'ng results from the fact that the first solvent shell must
librium simulations. Each nonequilibrium RDF is calculated over a short translate inward before the second solvent shell can rearpénge,
(100 fs) block. For example, the= 650 fs (dashed curves) RDF is  as documented in previous studies of solvation dynafig's>?
the average RDF using the 60000 fs block in each of the Now that we see how translational solvent motions underlie
ggr}e%ilittt)rigm trajc;cg_c;fries. Note that _for(t():)lafit)cl1 WetC;EW show the i the nonequilibrium relaxation, we can reconsider Figure 3, which
S (dottea curve) diiterence curve In and no € corresponain R :
time-dependent RDF in (a). The peaks in (b) show where solvenr: densi(\tgyShowed thalCo(t) qnq S(.t) l(.)Ok very similar at times longer
is increasing; the valleys in (b) show where solvent density is than~1 ps. Th|§ S|m|larlty likely results from the fact that the
decreasing. final restructuring and fine-tuning of the solvent structure
leads us to conclude that our nonequilibrium projections have (including some of the first shell) in the nonequilibrium
uncovered at least four distinct underlying relaxation regimes. Simulations lies within the LR approximation. By comparing
To build a molecular picture of the motions underlying each the Iong.lt.ud.mal (not shovyn) anq Lenn.ard-.]one.s prqjectlons for
of the distinct relaxation regimes, we have computed dynamic the ?q“"'b““m neutral_ simulations with thos_e in Figure 6a,b,
radial distribution functions (RDFs) to investigate how the local we find that the Iong-tlmet(>_ 0'9 ps) dynamlcs_ OC.O(t) are
solvation structure changes with time following excitation. To nearly the same as the longitudinal and L1 projectionS(ip

calculate time-dependent RDFs, each nonequilibrium trajectory {\_/IoreO\l/er, tl_zlgu(:e 8 show;ttr;at tk(\je l{‘] prol_e(t:nolrl]s_gf tT.e If)ng-
was broken into 100 fs segments, and the averaged RDF from ime relaxation dynamics do(t) and(t) are virtually identical.

each segment was then further averaged over the 400-trajector hh's sugges_,lt%that af_terll ptTQ" thebsc;:utesolve?r: relaﬁ?ﬁon n "
ensemble; the results are shown in Figure 7a. Figure 7 also. € nonequilibrium simufations behaves as though the system

shows the equilibrium RDF for the excited-state solute (neutral, IS near equmbnu_m a“’”r?d th? neutrgl solute. Thus, t.h's. long-
t =+, thick solid curve). To make the structural changes clear, time agreement is effectively in the linear response limit (and

. . inci $
we also show the difference between the time-dependent RDFg0t @ coquenpé.). .
Up to this point, we have seen that translations account for

and the equilibrium RDF for the ground-state solute (anion, . ) L
t = 0, thin solid curve) in Figure 7b. The rising probability WO of the four relaxation processes seen in the nonequilibrium

peak at~4.8 A of panel b shows the influx of solvent molecules  Solvation dynamics of this system (rapid translations that
forming the first solvent shell around the newly created neutral €Stablish most of the neutral solvation structure and slower,
solute, whereas the growing probability deficiteh.2 A shows diffusional translations that complete the solvation dynamics;
the loss of the solvent structure imposed by the formerly Figures 6a and 7). The remaining two relaxation mechanisms
occupied ground-state anion. Together, parts a and b of Figureresfun from solvent rotathnal motions. In sec.tlon .B we
7 show that restructuring of the solvent around the smaller, Pointéd out that modulation of the unoccupied state can
neutral excited state is nearly complete afte#50 fs; little contribute as much or more to the dynamics of the solvation
additional rearrangement of the solvation structure takes place€N€rg9y gap as modulation of the occupied state. For the
between 650 and 1150 fs (not shown). This allows us to as;Signnonequmbnum simulations considered here, the destabilization
the early-time £650 fs) portion of the translational relaxation  ©f the (unoccupied) ground-state anion following excitation is
to the rapid inward motion of the nearby solvent molecules, ~50 times Iarger_ than the stabilization of the (occupied) excneql-
accounting for~50% of the total translational relaxation (cf. state neutral. This means that we only need look at the dynamics
Figure 6a,Song(t) att = 650 fs). of the energy of the unoccupied state, the anisolvent

Figure 7 also makes it clear that the remainder of the interaction energyE*"®{t), to understand the nonequilibrium
nonegquilibrium translational relaxation, which occurs on time relaxation of the full solvation energy gapConsideration of
scales longer tharv650 fs, results from minor rearrangements only the anion solvation energy fits well with our arguments
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scale in Figure 6a to rotations by first-shell solvent molecules
that increase the solvation energy gap via the LJ interaction.
How can we rationalize the fact that the LJ and Coulomb
interactions resulting from first-shell rotational solvent motions
not only have opposing effects on the solvation energy gap but
also act on different time scales? In section III.A, we calculated
equilibrium angular distributions around the ground- and
A E®on(ty  —— E2en (f) excited-state solutes (Figure 5) and found that, on average, less
2], anion g ... anion than one more first-shell solvent dipole points toward the neutral
—EL () Erot, Cour () solute than points toward the anionic solét@hus, the solvent
1 T T T T 1 rotational motions that matter most tE must be those that
0 1 2 3 4 S (on average) move the negatively charged oxygen site on the
Time (ps) one “anomalous” first-shell solvent molecule closer to the anion
Figure 9. Nonequilibrium projections (eq 9b) of the un-normalized (i.e., the THF dipole rotates from pointing “away” to pointing
anion-solvent interaction energy as a function of time after excitation. “towards” the solute, as per the convention in Figure 5b). As
The overall energy of the anioE{"*t), dashed curve) increases with ~ soon as this rotational motion begins, the unfavorable Coulomb
time, thereby decreasing the total solvation energy d&p)( The interaction with the oxygen site should destabilize the anionic

Lennard-Jones E7°\t), solid curve) and CoulombEE™Yt), not solute and thus decrease the solvation energy gap. This

shown) projections of the aniersolvent interaction energy are nearly ~ destabilization acts rapidly because only small rotations of the

the same as the corresponding projections of the total solvation energydipole are necessary to decrease the gap, so we assign the early-

{anior time rotational relaxation mechanism to this rapid rotational

motion that destabilizes the anion state via the Coulomb

, interaction.

dotted curve) is nearly the same Bg,\t). We assign these (Cou- After causing the early-time destabilization of the anion

I(_)mb-based') rotational motions to the first of two dlstlnc_t nonequilib- solvation energy, however, the anomalous THF molecule

rium relaxation mechanisms that come from solvent rotations (see text). : . . .
continues to rotate, and the end result is an increase in the

The projection of LJ interactions onto first-shell solvent rotational ’ Y

e number of THF oxygen sites pointing toward the solute. Indeed,

Tot L. ! ; _in section llIl.LA, we calculated the solute-oxygen RDFs and

of the anionic state. This means that the solvation energy gap is .

increasing with time and we assign this process to the second rotationalf0UNd that the THF oxygensolute distance decreases more than
relaxation mechanism (see text). All of these curves were calculated the THF center-of-mass-solute distance (cf. Table 2 and Figure
using a subset of only 49 of the nonequilibrium trajectories, and all of 4b). This increase in the number of proximal THF oxygen sites
the rotational projections were calculated from e*9b. comes at the expense of having to move THF methylene sites
. . ) away from the solute. Because the THF oxygen-site LJ size

that_lnward translation of _the first-shell solvent molecules parameter is-1 A smaller than the corresponding methylene-
prowde_s most of the r?'axa“or_‘ of the gap: _the sohelvent site size parameter (cf. Table 1), the long-term result of solvent
trapslatlons that provide a.sllght §tablllzat|on of the neutr.al rotations is to replace larger solvent sites near the solute with
quickly lead to unfavorable interactions on the steep repulsive smaller solvent sites. This produces a decrease of (part of) the
Lennard-Jones Wa”. of the larger _gro_und-state anion. In_what Lennard-Jones interaction energy with the unoccupied anion
follows, we W|.II.eI!JC|date the.contrlputlon.s of.solvent rotations state, thereby increasing the solvation energy gap. In combina-
to the nonequilibrium dynamics by investigating how rotational i, ‘Figures 5a and 7 show that rotational motions have no net

motions affectE*"t). effect on the solvation energy gap: the rotations first quickly
Figure 9 shows the total (un-normalized) energy of the destabilize the anion via the Coulomb interaction, but on a longer
anion time scale, rotations lead to Lennard-Jones interactions with
smaller solvent sites that provide a roughly equal amount of

Eanion(t) / Soxygen

gap in Figure 6b.E2°Yt) is not shown because the projection of

Coulomb interactions onto solvent rotational motiorE e, (1),

motions E?;i‘ﬂ'}(t), dash-dot curvej® shows a decrease of the energy

unoccupied anion stat&€"*(t) (dashed curve). This curve is
nearly identical to the relaxation of the total solvation energy A
gap, S(t) (solid curve in Figure 3); the slight differences are stab_lllz_atlon. .

due to the small changes in the solvation energy gap resulting It is important to remember that these solvent rotations work

from stabilization of the neutral. The various dotted and dashed t© Solvate the small neutral excited state and are not driven in
curves in Figure 9 show different projections of the (un- &Ny Way by the unoccupied anionic ground state. The fact that
normalized) energy of the unoccupied anion state; for clarity rotational motions cause smaller sites to interact with the neutral

all of the curves in Figure 9 have been shifted to asymptotically @1d also result in a slight decrease in the energy of the

approach zero in the long-time limit. The figure shows that both unoccupied anion is coincidental. However, because the overall
—_— energy of the anion state increases so dramatically, this small

. . iol .
the Lennard-Jones projectiof 1), solid curve) and the  effect (of opening the energy gap) is not observed without the
Coulomb projection onto solvent rotation&;{ &, (t), dotted method of projections presented in section IV.A and ref 15.
curve) destabilize the anion, resulting in a decrease of the
solvation energy gap:55 Moreover, Exyon (1) increases on a
time scale that matches well with the early-time stabilization In summary, we have calculated many of the important

V. Conclusions

of the solvation energy gap evident f8i(t) (cf. Figure 6a,  equilibrium and nonequilibrium dynamical properties of Jor-
dashed curve). In contrast, the anion solvation energy is gensen’s model of liquid THF. We found that all of the

stabilized by rotational contributions of the aniersolvent rotational and translational degrees of freedom in THF relax
Lennard-Jones interactiorEfQi’fG(t), dash-dot curve)® The on similar time scales. We also studied the nonequilibrium

. . amion solvation dynamics resulting from the removal of charge from
rotational Lennard-Jones contributioBr§{t)) has a slower 5 anionic atomic solute in THF. Because the time scales for

decay tharEftf‘ti"’c”ou(t), so we assign the second rotational time translational and rotational relaxation are similar, we had to
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project the solvation energy gap onto various molecular motions  (7) (a)( B?;\rthel, E-(ti)?).; Martini, 1. B.; Scawlartz, B.1 %hem. Phys.

ifi i 2000 112 (21), 9433. Martini, 1. B.; Barthel, E. R.; Schwartz, BJ.J
to uncover how specific degrees of freedom contributed to the & o ™0 0 500°1 1 3 o) 11345, (¢) Barthel, E. R. Martini. I. B.
fsolvatllon dynamics. In comblnathn, the results led to a picture schwartz, B. JJ. Phys. Chem. B001 105 (49) 11230. (d) Martini, 1. B.;
in which the bulk of the relaxation was caused by relative Barthel, E. R.; Schwartz, B. J. Am. Chem. So@002 124(25), 7622. (e)
translations of the solute and solvent. The initial translational gg(f)tgi'i E-5 gl-gMafg”':ﬂ']- IE‘-?EKSSZSe'th-? tSChé’ng;Zv B.IleHChtla_mt.nggys.
relaxation resulted from rapid soluteolvent translations due  5-¢ (3_% yers (7) Barthel, E. R.; Schwartz, B.Ghem. Phys. Let2003
to the size d.ecrease of t.he solute upon excitation. The longer- () maroncelli, M.J. Mol. Liq. 1993 57, 1.
time translational relaxation was due to a subtle, whole-system,  (9) (a) Rosenthal, S. J.; Jimenez, R.; Fleming, G. R.; Kumar, P. V.;
repacking on diffusional time scales. We also found an unusual Maroncelli, M. J. Mol. Liq. 1994 60, 25. (b) Schwartz, B. J.; Rossky, P.

PSR : A R. J. Phys. Chem1995 99, (10), 2953.
ncellation in th Ivent rotational pr ions that | n
canceliatio the solvent rotational projections that led to no (10) Mukamel, SPrinciples of Nonlinear Optical Spectroscop®x-

net .change.in the solvation energy'gap; early-timg rmatio.nal ford: New York, 1995. Cho, M.; Yu, J.-Y.; Joo, T.; Nagasawa, Y.; Passino,
motions rapidly decreased the gap via the Coulomb interaction, s. A.; Fleming, G. RJ. Phys. Chem1996 100, 11944.
but the solvation energy gap was also slowly increased via (11) Chandler, Dintroduction to Modern Statistical Mechanjg3xford
favorable Lennard-Jones interactions between the anionic solutéJ”"{ZrS';y press: ’:/TW jor\'/‘ 1387-8 b A Bera MChem. Ph
and the smaller oxygen site on THF. 195(95 )10383’12'69“ % 7 anden Fot = A e, e TS
. With t.h.e molecular picture summarized above, we are NOW  (13) (a) Skaf, M. S.; Ladanyi, B. MI. Phys. ChemL996 100, 18258.
in a position to understand the reason for the breakdown of LR (b) Day, T. J. F.; Patey, G. N.. Chem. Phys1999 110, 10937. (c) Laria,
in this system, and why (without projection analysis) the D-?(i‘:)af(v ';"-Aﬁ-l Chgm-TPhys\l/%g %\11 1:’00-8 1LPhys. Chem. 2000
H H H _ a erne, D.; lran, V., schwartz, b.Jd. yS. em.
breakdown is hidden. LR breaks down b(_acause the.excngd 104 (22), 5382. (b) Tran, V. and Schwartz. B.D.Phys. Chem. B999
state solute allows the solvent to sample a different configuration 103 (26), 5576-80.
phase space than the ground state: due to its larger size, the (15) Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. Phys. Chem.
ground-state anion prevents the solvent from modulating theAZ(OO;& (1(;7 (2(;1). 4773 | A A @
; i 16) (a) Ladanyi, B. M.; Maroncelli, MJ. Chem. Phys1998 109 (8),

'S:c.’lvat'o;' egergy gaptr?t distances between dstﬁ and 4t'2 dA t(th'3204. (b) Ladanyi, B. M.; Stratt. R. M. Phys. Chem. A998 102, 1068.

igure 7). Because this 'S,a region {iroun € excied-stale (17) Ladanyi, B. M.; Perng, B.-Cl. Phys. Chem. 2002 106, 6922.
neutral that has_ an apprecable dens!ty o_f solvent_molecules, (18) Steele, W. AMol. Phys.1987 61 (4), 1031.
LR cannot possibly be a valid approximation for this system.  (19) Allen, M. P.; Tildesely, D. JComputer Simulation of Liquids
The coincidental agreement betwe®t) andC_(t) in Figure 3 Oxford University Press: New York, 1987.
stems from the fact that the rotational and translational motions __(20) Ciccotti, G.; Ferrario, M.; Ryckaert, J.-Fol. Phys.1982 47 (6),
of THF occur on similar time scales,_as seen in Flgu_re 2. This (21) Steinhauser, Mol. Phys. 198245 (2), 335.
means that no matter how the different translational and  (55) The tapering function was employed only for the actual molecular
rotational motions couple to the energy gap, the equilibrium dynamics, and was not used in the computation& in the solvation

and nonequilibrium solvent response functions will tend to decay dynamics calculations.
on similar time scales. (23) Dawes, S. B.; Ward, D. L.; Fussa-Rydel, O.; Huang, R.-H.; Dye,

. . . . . J. L. Inorg. Chem.1989 28, 2132.
Finally, we close by reiterating that this work was motivated (24) Pyper, N. C.; Pike, C. G.; Edwards, P.JPAm. Chem. S0d993

by femtosecond experiments of the charge-transfer-to-solvent11s, 1468.
reaction of the sodium anion in THF being performed in our  (25) We picked starting configurations for the nonequilibrium trajectories
lab? In particular, our experimental work indicates that detach- from the ground-state (anion) equilibrium trajectory. The starting configura-
ment of electrons from sodium anions in THF takes ap- g?srlsr’gad an average separation~ef ps, with a minimum separation of
proximately 700 fs. If the model for THF that we have employed  (26) Because there are two possible tumbling directiori, > cross
here is accurate, then the 60000 fs time scale for translational  term arises, which is of the form po(t) = M (t)-Oe(0)I+ Mi(t)- 0 (0)0
solvation by THF could suggest that translational motions are  (27) Relaxation times are sometimes defined as [y (t); using this
responsible for detachment in CTTS reactidngvork is definition, we find very similar results for the tumbling and spinning decay
currently underway in our group to implement both éfhend rales. tumsie = 1.9 ps aNdispin = 1.7 ps

gy . . . (28) Stratt, R. M.; Jang, J. Chem. Phys200Q 112 (17).
two-electrof® mixed-quantum/classical simulations of the CTTS (29 (a) Anderson, J.: Ullo, J.: Yip, S Chem. Phys1987 86 (7),
reaction with sodide in this model of THF to build a molecular- 4078. (b) Chelli, R.; Cardini, G.; Procacci, P.; Righini, R.; Califano, S.;

level understanding of the pumyprobe experiments that Albrecht, A.J. Chem. Phy2000,113(16), 6851. () Chelli, R.; Cardini,
motivated this work Ricci, M.; Bartolini, P.; Righini, R.; Califano, 2hys. Chem. Chem. Phys.
) 2001, 3, 2803.
. . (30) Error bars shown are 2 standard deviations. For both of the
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