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In this paper, we investigate the solvation dynamics of the weakly polar organic solvent tetrahydrofuran
(THF) via classical molecular dynamics simulation. We find that the relaxation dynamics of all of the rotational
and translational degrees of freedom of neat THF occur on similar time scales and have similar power spectra,
making it impossible to use spectral density analysis to discern which specific molecular motions are involved
in solvation. Instead, we probe the molecular origins of solvation dynamics using a nonequilibrium projection
formalism that we originally outlined in M. J. Bedard-Hearn et al.,J. Phys. Chem. A2003, 107 (24), 4773.
Here, we expand this formalism and use it to study the nonequilibrium solvation dynamics for a model reaction
in THF in which a charge is removed from an anionic Lennard-Jones (LJ) solute, leaving behind a smaller
neutral atom. The solute parameters are chosen to model the photodetachment of an electron from a sodium
anion, Na- f Na0, to compare to the results of ultrafast spectroscopic experiments of this reaction being
performed in our lab. We are able to explain the hidden breakdown of linear response for this system that we
uncovered in our previous work in terms of the dynamical properties of the neat liquid and the structural
properties of the solutions. In particular, our nonequilibrium projection analysis shows that four distinct solvation
mechanisms are operative: (1) a rapid relaxation (t e 700 fs) caused by longitudinal translational motions
that dramatically change the local solvation structure; (2) a slower relaxation (t > 700 fs) caused by diffusive
longitudinal translational motions that completes the transformation of the long-range solute-solvent packing;
(3) an early-time relaxation (t < 500 fs) caused by solvent rotational motions that destabilizes the (unoccupied)
anion ground state via Coulomb interactions; (4) a longer time process (t g 500 fs) caused by solvent rotational
motions thatincreasesthe solvation energy gap. This last process results from the LJ interaction component
of the solvent rotational motions, as the nonequilibrium dynamics bring smaller THF-oxygen sites closer to
the excited solute in place of larger THF-methylene sites. Overall, the simulations indicate that nonequilibrium
solvation dynamics involves cooperative motions of both the solute and solvent and consists of multiple
competing relaxation processes that can affect the solvation energy gap in opposite directions.

I. Introduction

Tetrahydrofuran (THF) is an important organic solvent
employed extensively in synthesis and commonly used in
spectroscopic studies. Despite the importance of this solvent,
there have been surprisingly few computer simulations aimed
at understanding the dynamical solvation properties of THF on
the molecular level. Jorgensen and co-workers developed a
united atom (5-site) model for THF, and performed Monte Carlo
(MC) calculations to explore the static structural properties of
both neat THF and of a sodium cation dissolved in THF.1,2

These researchers found that the disk-like THF molecules tend
to arrange in parallel-ring structures, or short chains, in the neat
fluid, and that they form a near-square-pyramidal structure
around Na+.2 Jorgensen and co-workers also explored the effects
of puckering of the THF ring and concluded that nonplanarity
or psuedorotation of the ring makes little difference to the
equilibrium structure of this fluid.1

In addition to Jorgenson’s MC-based structural studies, there
have been a few limited computational studies of the dynamical
properties of THF; we are aware of only four such investigations
in the literature. The first, by Drabowicz, used Jorgensen’s

model in molecular dynamics (MD) simulations,3 although
Drabowicz calculated a radial distribution function (RDF) with
a slightly different first peak position than Jorgensen’s. In
addition to the RDF, Drabowicz calculated the THF center-of-
mass and angular velocity autocorrelation functions. A second
MD study took advantage of Jorgenson’s model but reported
only the diffusion constant.4 The authors in this study had
removed the partial charges (and therefore the dipole moment)
from the THF molecules in their calculation, so it is unclear
whether their reported diffusion constant is relevant to either
the simulated or experimental fluid.4 The third MD study, by
Helfrich and Hentschke, simulated segments of a polymeric
residue in liquid THF.5 As part of this study, the authors
developed their own model for THF using a packaged software
program (AMBER), choosing their parameters to obtain a
diffusion constant that was as close as possible to the experi-
mental value. Thus, Helfich and Hentchke’s model used very
different parameters than Jorgensen’s. In their conclusions,
Helfrich and Hentschke noted only that the high symmetry of
THF seemed to lead to a pronounced solvent structure; these
authors did not calculate any dynamical quantities other than
the diffusion constant. Finally, and most recently, there has been
a series of publications by Mu¨ller-Plathe and co-workers
exploring the uniqueness of the MD simulation parameters when
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attempting to simulate a specific experimental solvent.6 These
workers used a variety of different force field parameters to
model THF and calculated some thermodynamic properties and
the diffusion constant for each model. However, none of these
previous MD or MC calculations has provided the level of
analysis of THF needed to understand the dynamical behavior
of this important organic solvent.

Our interest in the dynamical properties of THF stems from
recent ultrafast spectroscopic studies in our lab investigating
charge-transfer-to-solvent (CTTS) reactions in this solvent.7 Our
experiments have focused on the dynamics of the photodetach-
ment of electrons via CTTS excitation of sodium anions
(Scheme 1). Because the sodium anion CTTS system has only
electronic degrees of freedom (the reactants and products are
either single atoms or solvated electrons), the charge transfer
dynamics are determined solely by the motions of the sodium
atom and the surrounding THF solvent molecules.7 Thus, the
purpose of this paper is to gain better insight into the dynamical
properties of THF as a solvent via MD simulation. In the results
presented below, we will investigate both the properties of the
equilibrium fluid and the nonequilibrium solvation dynamics
resulting from the ionization of a sodide-like solute in THF.

The chief quantity of interest in solvation dynamics is the
solvation energy gap,∆E ) Eexc - Egnd, whereEexc andEgnd

are the solute-solvent interaction energies when the solute is
in the excited and ground states, respectively. The normalized
nonequilibrium solvent response function,S(t), is defined by8

whereR denotes the positions of the solute and all of the solvent
molecules and the overbar represents a nonequilibrium ensemble
average in which the solute is promoted to its excited state at
t ) 0. Equation 1 is normalized to begin at 1 and decay to 0
after the system has equilibrated around the excited-state solute.
Thus,S(t) determines the rate at which the solute and solvent
relax to accommodate changes in the electronic or structural
properties of the solute resulting from excitation. Experimentally,
S(t) is assumed to be simply related to the relaxation time scales
observed in time-resolved fluorescence (Stokes shift)8,9 or
photon echo spectroscopies.10

One of the primary tools used to study solvation dynamics
is the idea of linear response (LR), which is based on the
Onsager regression hypothesis.11 In the LR limit, S(t) is
equivalent to the equilibrium solvation time correlation function
(TCF),8,11

where the angled brackets denote an equilibrium ensemble
average andδ∆E ) ∆E - 〈∆E〉 is the equilibrium fluctuation
of the energy gap (and theR dependence is repressed). The
equilibrium solvation correlation function,C(t), measures the
persistence of memory of the energy gap. In the LR limit, the

motions of the solute and solvent molecules in response to a
small perturbation that takes the system away from equilibrium
are the same as those that follow from a natural equilibrium
fluctuation of the energy gap; in this limit, one can show that
S(t) ) C(t).11 Experimentally, the dynamics of spectral diffusion
measured in transient hole burning experiments is assumed to
be simply related toC(t).12

In most (but not all13,14) simulations of solvation dynamics
in which the excited state of the solute involves a charge
redistribution,S(t) and C(t) are found to agree, implying that
most such systems fall within the limit of LR. However, LR is
observed to fail when the excitation of the solute involves a
change in size or shape.14 This is because the change in solute
volume upon excitation drives nearby solvent molecules into
locations that they never explore at equilibrium (in the case of
a size decrease) or excludes nearby solvent molecules from
space that was formerly accessible at equilibrium (in the case
of a size increase). This means that when size changes are
included, the solvent samples a different configuration space at
equilibrium than it does away from equilibrium; therefore, the
equilibrium and nonequilibrium relaxation dynamics need not
be the same.

Of course, it is always possible that a situation arises where
the equilibrium and nonequilibrium relaxation dynamics of a
system are different but occur on similar time scales, so that
S(t) agrees withC(t) by coincidence, but LR does not hold. In
recent work, we presented a preliminary MD exploration of the
LR approximation for a negatively charged solute in THF that
undergoes the loss of its charge and a decrease in size (Scheme
1).15 We found a rough agreement betweenS(t) andC(t) despite
the fact that the simulated solute perturbation included a
significant decrease in solute size. We then showed how to
project the nonequilibrium solvation dynamics onto any mo-
lecular coordinate of the system,15 and we compared these
nonequilibrium projections to projections of the equilibrium
dynamics16,17 based on Steele theory.18 We found that even
thoughS(t) agreed fairly well withC(t) for this system, the solute
and solvent motions underlying the relaxation dynamics for the
equilibrium and nonequilibrium processes were completely
different. We concluded that there was a hidden breakdown of
LR for this solute-solvent system because it was not im-
mediately obvious from the comparison ofS(t) and C(t) that
LR fails.

In this paper, we extend our analysis of the details underlying
the dynamics of this particular solute-solvent system that
exhibits a hidden breakdown of LR. We also present detailed
analyses of both the dynamical properties of Jorgensen’s model
of THF and the nonequilibrium solvation dynamics of an atomic
solute in this model of THF. In particular, we explore the
relationship between the structural and dynamic equilibrium
properties of THF and the mechanism of nonequilibrium
solvation. We begin in section II by describing the computational
methods used in our MD simulations, and then present the
results of equilibrium simulations in section III. In section III.A,
we show our results for neat THF and in section III.B, we
discuss the equilibrium simulations of solutions of both sodium
and sodide in THF. Section IV is divided into three parts: part
A discusses the formalism we use to project the nonequilibrium
solvation energy gap onto solute and solvent molecular degrees
of freedom, part B presents the results of nonequilibrium MD
simulations modeling the ionization of a sodide-like solute in
THF (Scheme 1), and part C provides a molecular picture of
the solvation dynamics in this model solute-solvent system.
In section V, we address the reasons why LR breaks down in

SCHEME 1

S(t) )
∆E(R;t) - ∆E(R;∞)

∆E(R;0) - ∆E(R;∞)
(1)

C(t) )
〈δ∆E(0) δ∆E(t)〉

〈(δ∆E)2〉
(2)
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the face of the seeming agreement betweenS(t) andC(t), and
we offer some concluding remarks.

II. Computational Methodology

All of the simulations discussed in this paper consist of
microcanonical (constantE, V, N) molecular dynamics (MD)
simulations of an atomic (Lennard-Jones) solute and 255 THF
solvent molecules (or 256 THF molecules for simulations of
the neat solvent). The equations of motion were integrated using
the Verlet algorithm19 with a 1 fs time step. The simulation
cell had a density of 0.8892 g/cm3 (the same as the experimental
fluid at 295 K), corresponding to a cubic simulation box
32.5 Å on a side. The system had an equilibrium temperature
of ∼298( 5 K. In all cases the total energy was conserved to
better than 0.001%.

The THF solvent molecules were modeled using the five-
site (unified methylene groups) potential introduced by Jor-
gensen, which has partial charges on the oxygen and two
R-methylene sites.1 We used a modified SHAKE algorithm20

to keep the molecules rigid and planar. The site-site interaction
potentials in this model are a pairwise sum of Coulomb and
Lennard-Jones terms, such that the interaction between any two
sites,i and j is

where rij is the distance between theith and jth sites, which
could be any of the solvent sites or the Lennard-Jones solute;
the solvent parameters of Jorgensen’s model are listed in Table
1.1 The site-site potentials of eq 3 were further modified by
including a center-of-mass tapering function that smoothly
brought the potential to zero over a distance of 0.5 Å with a
final cutoff radius of 15.9 Å.21,22We found that when we used
a site-based cutoff (either strict spherical or tapered) for the
potential instead of the center-of-mass-based cutoff, the solvent
unnaturally froze. Minimum image periodic boundary condi-
tions19 were used throughout the simulations except for the
calculation of the diffusion constant.

For the solute, we chose potential parameters to model the
conversion of a solvated sodium anion into a solvated neutral
sodium atom, as a simple imitation of the femtosecond experi-
ments studying charge-transfer-to-solvent reactions being per-
formed in our lab.7 All of the solute parameters also are listed
in Table 1. For the excited-state solute (neutral), we used a
sodium-sodium Lennard-Jones well depth ofε ) 1.47× 10-20

J, and we estimated the size of the excited-state solute to be
close to that of a sodium atom. For the ground-state (anion)
solute, we used a sodide-sodide size based on the crystal
structures of sodide salts obtained by Dye et. al.,23 and we used
Edwards’ polarizability measurements24 to estimate the sodide-
sodide well depth. For the solute-solvent Lennard-Jones

interactions, we used the solute and solvent Lennard-Jones
parameters listed in Table 1 and the standard Lorentz-Berthelot
combining rules.19 The ground-state solute also contained a
charge of-e that interacted by the Coulomb potential with the
partial charges on the oxygen andR-methylenes of each THF
solvent molecule.

Starting from an fcc lattice, we equilibrated the neat solvent
and the solute-solvent systems with velocity rescaling for 5-10
ps, followed by at least 10 ps of additional equilibration. We
then ran a neat solvent trajectory for 100 ps, and ran equilibrium
solution simulationssone with the anionic solute and one with
the neutral solutesfor 200 ps each. We also ran 400 nonequi-
librium trajectories, each of 12 ps duration. Because the
nonequilibrium solvation dynamics were completed in only a
few picoseconds, running to 12 ps allowed us to ensure that
the system had fully equilibrated around the neutral excited state.
The nonequilibrium simulations were started by choosing
uncorrelated configurations25 from the ground-state (anion)
equilibrium run and instantly removing the charge and changing
the Lennard-Jones parameters to those of the excited state
(neutral). Each initial configuration provided the starting points
for two nonequilibrium trajectories: one in which the velocities
were kept unchanged, and another in which the velocities were
reversed. To mimic a resonant absorption, the starting configu-
rations were chosen by requiring the solvation energy gap,∆E,
to be within 0.75% of the equilibrium average. The temperature
of the equilibrium solution simulations did not change noticeably
from the neat solvent simulations, but the nonequilibrium
calculations saw an increase in temperature of about 8 K
following excitation of the solute.

III. Equilibrium and Nonequilibrium Solvation Properties
of THF

In this section, we set the stage for our exploration of the
molecular motions involved in nonequilibrium solvation by first
examining some of the equilibrium properties of both neat THF
and THF solutions. We also present both equilibrium and
nonequilibrium solvent response functions and we discuss the
reasons why the LR approximation might be expected to break
down following excitation of our atomic anion solute.

A. Equilibrium Structure and Dynamics of neat THF. The
static structural and thermodynamic properties of this model of
THF already have been explored in the MC simulations of
Jorgenson and co-workers.1,2 The advantage of MD over MC
simulations, however, is that MD provides information about
dynamic properties, such as time correlation functions and the
diffusion coefficient. We begin by investigating one of the
simplest equilibrium dynamical properties of the system, the
rotational dynamics of the THF molecules, which are explored
in Figures 1 and 2. Figure 1 shows the normalized orientation
autocorrelation function

for a unit vector,û, that lies either in the plane of the THF
molecule,ûs (spinning, solid curve), or perpendicular to the
plane of the THF ring,ût1 and ût2 (tumbling, dashed curve,
calculated as the sum of both tumbling rotations and tumbling
cross-terms), as depicted in the inset to Figure 1.26 The relax-
ation times for the orientation autocorrelation functions were
τtumble ) 1.9 ps andτspin ) 1.6 ps, which we determined by
fitting the curves to single exponential decays (not shown).27

Figure 2 shows the velocity autocorrelation (VAC) functions,
A(t), for the center-of-mass velocity (solid curve) and the angular
velocities for the spinning (dotted curve) and the sum of the

TABLE 1: Lennard-Jones and Coulomb Potential
Parameters for the Solute-Solvent Systems Studied in
This Work (Eq 3)a

σ (Å) ε × 10-21 (J) q (e)

Oxygen 3.0 1.18 -0.5
R-methyl 3.905 0.82 +0.25
â-methyl 3.905 0.82 0.0
Na0 3.14b 14.7 0.0
Na- 5.21c 3.11d -1.0

a All parameters taken from ref 1 unless otherwise noted.b Estimated
from various sources.c Calculated from ref 23; see text for details.
d Calculated from ref 24; see text for details.

uij(rij) ) 1
4πε0

qiqj

rij
+ 4εij[(σij

rij
)12

- (σij

rij
)6] (3)

ψ(t) ) 〈û(t)‚û(0)〉 (4)
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tumbling (dashed curve) degrees of freedom. The VACs were
calculated using

whereu3 (t) is either the center-of-mass velocity, or the spinning
or tumbling angular velocities.16b,28 Although the orientation
autocorrelation functions decay on the∼1-2 ps time scale, all
of the VACs have 1/e decay times of∼0.25 ps. We note that
in the MD calculations by Drabowicz,3 the time ordering of
the center-of-mass and angular velocity time correlation func-
tions is reversed from what we show in Figure 2. We believe
that this may be the result of an incorrect labeling of the curves
in Figure 4 of ref 3. The featureless relaxation of the VACs in
Figure 2 is similar to that observed for other weakly polar planar
molecules, such as benzene.29 We believe that the slow
relaxation of the orientational time correlation functions is the
result of steric hindrance due to packing of the solvent
molecules; the solvent VACs all show a significant negative
region, indicating that THF has limited mobility due to strong
solvent caging.

The inset to Figure 2 shows the power spectrum for each of
the velocity autocorrelation functions, all of which are charac-
terized by a large broad band between 0 and 200 cm-1. Thus,
not only does the memory of molecular rotations and translations
persist for similar times, but the underlying motions occur in
similar frequency ranges. This makes it nearly impossible to
distinguish the solvent motions that are involved in solvation

by their time scale or by spectral density analysis.14,28 It is for
this reason that we have elected to explicitly project the
dynamics of specific solvent motions, as detailed below in
section IV.A.

Finally, to close our exploration of the equilibrium dynamical
properties of this model of THF, we have calculated the value
of the self-diffusion constant using the Einstein equation19

for the mean-square displacement of the center of mass, 6Dt )
〈|r (t) - r (0)|〉2, wherer (t) is the position of the center of mass
at timet. The experimental diffusion coefficient,Dexp ) 3.5×
10-5 cm2/s,5 is somewhat higher than the one we calculated for
this model,D ) 2.88× 10-5 cm2/s, suggesting that Jorgensen’s
model may overestimate the tendency of this solvent to stack
and cluster.

B. Solvation Dynamics and the Equilibrium Structure of
Atomic Solutes in THF. In this section, we discuss the
dynamical properties of solutions containing an anionic or
neutral atomic solute. In the LR approximation, the solute-
solvent interactions are characterized by the equilibrium sol-
vation response functionC(t), eq 2. Figure 3 shows the
equilibrium solvent response for the anionic solute (C-(t), dotted
curve), which is the ground state for the nonequilibrium
simulations, and the equilibrium solvent response for the neutral
solute (C0(t), dashed curve), which will be the excited state for
the nonequilibrium simulations.30 The solvation energies of the
unoccupied excited states were calculated using the neutral
solute interaction parameters forC-(t) and the anionic solute
interaction parameters forC0(t). Also shown in Figure 3 is the
nonequilibrium solvent response,S(t) (solid curve, eq 1),
calculated from 400 nonequilibrium trajectories in which the
solute simulation parameters were switched from those of the
anion to those of the neutral, mimicking electron photodetach-
ment from a sodium anion. In the limit of LR, we would expect
the equilibrium solvation time correlation functions for the anion
and neutral simulations to be the same. Because the two
equilibrium response functions are clearly different, we antici-
pate that LR will break down for the nonequilibrium perturbation
that converts the anionic solute into the neutral solute.

At the earliest times,S(t) and C-(t) are almost identical,
although there are small deviations at later times. (In fact, the
differences betweenC-(t) andC0(t) would not ordinarily deter
us from invoking the LR approximation given how similar the

Figure 1. Equilibrium angular orientation autocorrelation functions,
ψ(t) (eq 4), showing the spinning (solid curve) and tumbling (dashed
curve) degrees of freedom for neat THF. The inset shows the three
rotational degrees of freedom for this model. The tumbling correlation
function includes both tumbling directions and the tumbling-tumbling
cross term.

Figure 2. Equilibrium velocity autocorrelation functions (VACs),A(t)
(eq 5), for neat THF. The spinning (dotted curve) and tumbling (dashed
curve) motions are defined as in the inset to Figure 1. The inset shows
the power spectrum for each of the VACs, indicating that the center-
of-mass translations (COM, solid curve) and spinning and tumbling
rotations span similar frequency ranges.

A(t) )
〈u3 (t)‚u3 (0)〉

〈u3 2〉
(5)

Figure 3. Solvent response functions for different sodium and sodide
simulations in THF.S(t) (solid curve, eq 1) is the nonequilibrium
response when the anion is instantly changed into the neutral (see
Scheme 1), calculated from 400 nonequilibrium trajectories.C0(t)
(dashed curve, eq 2) is the equilibrium solvation response when the
solute is neutral sodium and the unoccupied solute state is the anion.
C-(t) (dotted curve, eq 2) is the equilibrium solvation response when
the solute is the anion the unoccupied excited-state solute is the neutral.
Both equilibrium solvent response functions were calculated from 200
ps trajectories. The error bars shown are two standard deviations.30
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nonequilibrium solvation response,S(t), is to C-(t).) The fact
that S(t) and C-(t) agree at early times is what might be
predicted from LR. This is because immediately after excitation
of the solute, the inertial solvent motions are expected not to
change from those when the solute was still in its ground state.
On the other hand, at longer times the solvent is approaching
equilibrium around the excited-state (neutral) solute, so the long-
time behavior ofS(t) should resembleC0(t) rather thanC-(t).8,9a

In a previous paper, however, we showed using the method of
projections (see section IV.A, below) that the solute and solvent
motions underlyingS(t) and C-(t) are completely different,
including at the earliest times where the inertial dynamics are
expected to be similar. In particular, we found that the inertial
part of the equilibrium response,C-(t), was predominantly
composed of solvent rotational motions, whereas the inertial
part of the nonequilibrium relaxation,S(t), resulted almost
entirely from solute-solvent center-of-mass translations.15 The
characteristic inertial solvation times for each of the response
functions shown in Figure 3 are summarized in Table 2.

Table 2 also summarizes the average solvation energies and
the average solvation energy gaps,〈∆E〉η ) 〈Eanion - Eneutral〉η,
for each of the equilibrium simulations, whereη ) anion
(neutral) indicates dynamic calculations involving the anionic
(neutral) solute. Note that our nonequilibrium trajectories were
launched from starting configurations chosen so that thet ) 0
nonequilibrium energy gap was within 0.75% of the average
energy gap for the anion-solute system; that is,〈∆E〉anion =
∆E(0). Table 2 also compares the root-mean-square equilibri-
um energy gap fluctuations〈δ∆E2〉1/2 to the total nonequilibrium
energy relaxation (Stokes’ shift), 2λ) ∆E(0) - ∆E(∞), where
λ is known as the solvent reorganization energy. In the limit of
linear response, we would expect the nonequilibrium Stokes’
shift to be proportional to the magnitude of the typical
equilibrium fluctuations of the solute-solvent energy gap,
〈δ∆E2〉,31

The fact that the nonequilibrium relaxation is so much larger
than what would be expected from the size of the anionic solute
equilibrium fluctuations provides another indication that LR
should fail, making the apparent agreement ofS(t) andC-(t) in
Figure 3a all the more surprising.

As we will show below, it is possible to understand both the
coincidental agreement betweenS(t) andC-(t) and many of the
details of solvation dynamics in THF in terms of the local
solute-solvent structure. Therefore, we present solute-solvent

radial distribution functions (RDF),32 g(r0R), which give the
probability of finding a solvent molecule (or site)R at a given
distance from the solute (denoted by 0) in Figure 4. Panel a
shows the solute-solvent center-of-mass RDFs for both the
ground- (anion, solid curves) and excited-state (neutral, dashed
curves) solutes, and panel b shows the corresponding solute-
solvent oxygen site RDFs; the distances for all of the first-shell
solvent peaks are listed in Table 2. Figure 4 makes it clear that
the ground- and excited-state solutes impose very different local
solvent structures; in fact, the different solute sizes lead to more
THF molecules packed around the anion (∼12 or 13) than
around the neutral solute (∼8 or 9). The large difference in first-
shell distances is consistent with our previous paper,15 where
we concluded that center-of-mass translations contribute sig-
nificantly to the nonequilibrium solvation dynamics.

Although the significant reorganization of solvent molecules
(when the solute switches from anion to neutral) explains why
translations dominate the nonequilibrium solvation response, this
reorganization also allows us to rationalize why translational
motions contribute so little to the solvation dynamics inC-(t).15

The influence of solute or solvent fluctuations on the solvation
energy gap not only comes from modulation of the occupied
state but also results from modulation of the unoccupied state
(in the case of the anionic solute, the unoccupied state is the
small neutral atom). Typically, large fluctuations of the energy
gap occur only if a particular solute or solvent motion causes

TABLE 2: Properties of the Equilibrium (Eqb) and Nonequilibrium (Neqb) Solvation Response Functions, as Well as the
Structural Properties of the Anion (Ground State) and Neutral (Excited State) Solutions at Equilibriuma

τ, fs 〈Ess〉,b kT solvation energy,kBT 〈∆E〉η,c kBT g0-com(r),d Å g0-oxy(r),d Å

(Eqb)Anion 135( 17e ∼90 ∼1f ∼75g 5.7 6.3
(Eqb)Neutral 63( 6e ∼15 ∼45f ∼105 4.7 3.8
(Neqb)Na- f Na0 259h n/a ∼180i n/a n/a n/a

a All equilibrium quantities were calculated from 200 ps simulations. The nonequilibrium data were calculated from the 400 trajectories, each of
12 ps duration.b The average solute-solvent interaction energy, as defined as in the text.c The average equilibrium energy gaps,〈∆E〉η )
〈Eanion - Eneutral〉η ) 〈Eanion〉η - 〈Eneutral〉η, for the simulations with the anionic solute and neutral solute.〈Eanion〉 is the average anion solute-solvent
interaction energy,〈Eneutral〉 is the average neutral solute-solvent interaction energy, andη indicates whether the equilibrium dynamics were performed
with the neutral or anionic solute.d First peak distance for the solute-solvent center-of-mass (0-com) or solute-solvent oxygen site (0-oxy) radial
distribution function.e Calculated from a 200-ps trajectory asτ-2 ) -d2C(0)/dt2 ) -G(0)/〈δ∆E2〉 (see ref 16a); the error is 2 standard deviations.
f The solvation energy for the equilibrium simulations is the root-mean-square of the average fluctuations of the energy gap,〈δ∆E2〉.1/2 g The average
energy gap for the ground state (anion) corresponds to the average energy of the perturbation in the nonequilibrium trajectories. In an experiment,
this would be the excitation energy.h Calculated by fitting the first 30 fs ofS(t) to a parabola and usingτ-2 ) -d2S(0)/dt2. The error we report is
for the parabolic fit,R2 ) 0.9995.i The solvation energy for the nonequilibrium simulations, 2λ) ∆E(0) - ∆E(∞) is the Stokes shift energy;
see text.

〈δ∆E2〉 ) 2λkBT (6)

Figure 4. Equilibrium solute-solvent radial distribution functions for
the anionic (solid curves) and neutral (dashed curves) solutes. (a) shows
the solute-solvent center-of-mass distributions and (b) shows the
solute-solvent oxygen site distributions. The first peak distances are
summarized in Table 2.
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the energy of the ground and excited states to fluctuate in
opposite directions. For our solute, the ground-state anion is so
large that solvent molecules cannot translate close enough to
modulate the energy of the unoccupied neutral excited state.
Therefore, translation-based fluctuations cannot couple strongly
to the solvation energy gap. This also means that all fluctuations
of the energy gap are effectively fluctuations of only the anion
solvation energy, and at equilibrium these fluctuations must have
a magnitude of∼kBT. As it turns out, the equilibrium solvent
motions that most strongly modulate the energy of the anionic
solute are rotations that reorient the THF dipole.15

Finally, before turning to the molecular details of the
nonequilibrium solvent relaxation, we note that Jorgensen and
co-workers have studied the thermodynamics and equilibrium
packing of THF around a charged Lennard-Jones particle that
modeled a sodium cation.2 By studying the solute-solvent
interaction energies and solute-solvent RDFs, Jorgenson and
co-workers discovered that the first-shell THF molecules interact
very strongly with sodium cations, which impose a rigid local
solvent structure with the THF oxygen atoms pointing toward
the cation. In contrast, this type of rigid imposition of solvent
orientational order does not occur with either our anionic or
neutral solute. This is demonstrated in Figure 5a, which displays
angular distributions of the first-shell33 solvent dipoles around
the ground- (anion, solid lines) and excited-state (neutral, dashed
lines) solutes. Our geometry convention is illustrated in Figure
5b, with θ defined as the angle between the solvent dipole and
the vector pointing from the solute to the solvent center-of-
mass. In particular, we see that the distribution of solvent dipoles
around the neutral solute is essentially uniform, whereas the
distribution of solvent dipoles around the anion shows a small
amount of local order, with a slight preference for the negatively
charged THF oxygen site to point away from the anionic solute.
On average, this amounts to less than one additional first-shell
THF oxygen site pointing toward the neutral than pointing
toward the anion. This detail turns out to be important in
understanding the nonequilibrium solvation dynamics of this
solute-solvent system, as we will discuss below in section IV.B.

IV. Nonequilibrium Solvation Dynamics of the Na- f
Na0 Reaction in THF

In this section, we review our new method for projecting out
the contributions of different solute and solvent molecular
motions onto the solvation energy gap. We then use these
projections to explore the molecular details of nonequilibrium
solvation dynamics in THF, with an eye toward building a
molecular understanding of why LR breaks down for this
solute-solvent system despite the apparent similarity of the
equilibrium and nonequilibrium solvent response functions.

A. Method for Nonequilibrium Molecular Projections. In
previous work, we were able to uncover the hidden breakdown
of LR for our solute-solvent system by directly comparing the
motions responsible for equilibrium and nonequilibrium solva-
tion dynamics inC-(t) andS(t).15 To determine how specific
molecular motions coupled to the equilibrium solvation energy
gap, we used Steele theory,16,18 and we developed a new
formalism to project the contribution from any degree of
freedom onto the nonequilibrium solvation energy gap.15 Finally,
we presented a new way to analyze the dynamics underlying
C(t) andS(t) by integrating the projected derivatives, providing
both a direct measure of the magnitude of the coupling between
a solute or solvent degree of freedom and the solvation energy
gap and a means for extracting the time scale for relaxation of
that degree of freedom.15 Here, we briefly review our method
for projecting the molecular contributions to nonequilibrium
solvation dynamics.

Using the chain rule for differentiation, we can write the rate
of change of the total solvation energy gap,∆E, as

where the sum onR runs over all degrees of freedom, the over-
dot denotes a derivative with respect to time, and we have
definedJR(t) as the velocity projection ontoR. For equilibrium
solvation dynamics, molecular information is contained in the
solvation velocity TCF,

By integrating eq 8 twice with respect to time, the contributions
from the degrees of freedomR andâ, CRâ(t), to the equilibrium
solvation TCF (eq 2) can be explored separately. This type of
analysis has been used to study how molecular rotations,
translations, and rotation/translation coupling drive equilibrium
solvation dynamics in both polar and nondipolar solvents.16,17

To investigate the molecular contributions to nonequilibrium
solvation dynamics, we rewrite the total nonequilibrium solva-
tion velocity response function,J(t) (eq 7), in terms of a specific
complete set of projections: the solute and solvent site Cartesian
coordinates. Thus

where the sum overµ runs over all solvent sites,Rµ represents
the solvent site positions,r0 is the solute position,Rµ0 ≡ Rµ -
r0, R̂ ≡ R/R, ∆E(Rµ0) is the solute-solvent energy gap,∆E′(Rµ0)
is the derivative of∆E with respect toRµ0, and it is understood
that the entire last expression is calculated as a nonequilibrium
ensemble average. Equation 9a contains the same information
as eq 7, but the sum overR in eq 7 is replaced by the sum over
the solvent degrees of freedomRµ plus the solute degrees of

Figure 5. (a) Equilibrium angular distribution functions for the neutral
(dashed curve) and anionic (solid curve) solutes. The area under each
histogram is normalized to the number of solvent molecules (∼12 for
the neutral solute,∼13 for the anionic solute) within 7.5 Å of each
solute.49 We have binned the THF dipole orientations to lie within one
of three regions defined by the dashed lines in (b): pointing in a 90°
cone toward the solute (region I); pointing tangential to the solute
(region II), or pointing in a 90° cone away from the solute (region III).
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freedom (r0). In addition, it is straightforward to integrate any
one of the projected nonequilibrium velocity response functions,
JR(t), back to a projected solvation response function,SR(t); we
have discussed the advantages of using the integrated projections
in previous work.15,34 We thus define the normalized nonequi-
librium projection onto a degree of freedomR as

where JR(t) is the solvation velocity projection onto the
coordinateR from eq 7,λ is the solvent reorganization energy
(eq 6), and like JR(t), the integrands in the middle two
expressions are calculated as nonequilibrium ensemble averages.

Unlike the equilibrium projectionsCRâ(t),15 the projected
SR(t)’s in eq 9b do not contain cross-coordinate terms. Thus,
we take the second time derivative of∆E to obtain the solvation
acceleration response function, which is the closest nonequi-
librium analogy to G(t).35 The total solvation acceleration
response function,B(t), is given by

where, as with eq 9a, we have chosen to write the totalB(t)
explicitly as a sum of the projections onto the solute and solvent
center-of-mass Cartesian coordinates. In eq 10a,R4 µ0 ) R4 µ -
r3 0 andR2 µ0 ) R2 µ - r10 are the relative velocity and acceleration
terms, and as with eq 9 the last two expressions are evaluated
as nonequilibrium ensemble averages. We now define the
normalized nonequilibrium projection onto any pair of scalar
coordinatesR andâ, SRâ(t), by integrating twice,15

whereBRâ(t) is the solvation acceleration response projected
onto the coordinatesR andâ and the integrand in the second
expression is calculated as a nonequilibrium ensemble average.
Except where specifically noted, we will use the word “projec-
tion” to refer to the integrated projected solvation velocity or
acceleration functions, eqs 9b and 10b.

In eqs 9a and 10a, the derivatives of the solvation energy
gap contain therelatiVe solute-solvent velocities and accelera-
tions; this emphasizes that solvation dynamics is a cooperative
effort involving motions of both the solute and solvent. In many
simulations of solvation dynamics, however, the solute is chosen
to be infinitely massive so that solute translations cannot
participate in solvation dynamics. This approximation does have
some physical grounding, because the solutes in many solvation
experiments are large organic dyes that are 50 or 100 times
more massive than the solvent molecules. In our simulations,

however, the mass of our atomic solute is about one-third the
mass of a solvent molecule, so we expect that solute translations
will make an important contribution to the solvation dynam-
ics.36,37 Because the solvation dynamics in eqs 9a and 10a are
projected onto relative solute and solvent motions, it is
straightforward to separate the solute contributions to∆E from
those of the solvent.38 In the next section, we use projections
to understand the nonequilibrium dynamics and the hidden
breakdown of LR in these solute/THF systems.

B. Molecular Projections of Nonequilibrium Solvation
Dynamics.Figure 6 summarizes various molecular projections
of the nonequilibrium solvation dynamics for the reaction
depicted in Scheme 1.39 The thick solid curve in Figure 6a,Stot(t)
(eq 1), is the calculated nonequilibrium solvent response function
for the reaction depicted in Scheme 1, which is the sameS(t)
shown in Figure 3. The dashed curve in Figure 6a showsSrot(t),
defined as the sum of all three projections of the solvation energy
gap onto solvent rotations (see inset to Figure 1); the dash-dot
curve in Figure 6a showsSlong(t), the projection of the solvation
energy gap onto solute-solvent longitudinal center-of-mass
translations (i.e., the direction between the solute and solvent’s
center of mass); and the thin solid curve showsSlat(t), the
projection onto the two lateral, or transverse, translations (i.e.,
solute or solvent translations that do not change the solute-
solvent center-of-mass distance).Srot(t) was calculated by
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Ṙ(t′)
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-B(t) ) ∆Ë(Rµ0;t) )
d

dt
J(t) ) ∑

µ

d

dt
[R4 µ0‚R̂µ0∆E′(Rµ0)] )

∑
µ

{[∆E′(Rµ0)R̂µ0]‚R̈µ0 + [∆E′(Rµ0)

Rµ0
] ×

|R4 µ0|2 - R4 µ0‚[R̂µ0(∆E′(Rµ0)

Rµ0

+ ∆E′′(Rµ0))R̂µ0]‚R4 µ0} (10)

SRâ(t) ) 1
2λ∫0

t
dt′∫0

t′
dt′′ {[∂∆E

∂R ]R̈ + [∂∆E
∂R ] ×
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Figure 6. Projections (eq 9b) of the nonequilibrium solvation energy
gap (averaged over all 400 nonequilibrium trajectories) for the reaction
studied in Scheme 1. (a) shows the integrated projections for THF
rotations (Srot(t), dashed curve), for solute-solvent center-of-mass
longitudinal translations (Slong(t), dash-dot curve), and for solute-
solvent center-of-mass lateral translations (Slat(t), thin solid curve). (b)
displays the projections onto the Coulomb (SCoul(t), dotted curve) and
Lennard-Jones (SLJ(t), dotted curve) parts of the solute-solvent
interaction. (c) shows the integrated projections onto motions of only
the solvent (Ssolvent(t), dashed curve), only the solute (Ssolute(t), solid
curve), and only the translational motions of the solvent (Ssolvent

trans (t),
dotted curve).Ssolvent

trans (t) was calculated by subtracting the full rota-
tional projection (Srot(t), (a)) fromSsolvent(t).43 The total nonequilibrium
solvent response function (Stot(t), eq 4, thick solid curve same as solid
curve in Figure 3) is shown for comparison in (a) and (b). Note the
scale changes on both axes in the different panels. In (a) and (c), the
curves are calculated from eq 9b.34 Srot(t) in (a) was calculated by
subtractingSlong(t) andSlat(t) from Stot(t).
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subtractingStrans(t) ) Slong(t) + Slat(t) from Stot(t). The large
contribution of center-of-mass longitudinal translations to the
total solvation dynamics is as expected due to the large
difference in the first solvent shell distances of the ground- and
excited-state solute, as seen in the RDFs in Figure 4a.

Based on our reasoning in section III.B, the fact that
longitudinal translational motions play an important role in the
total solvent response is easy to understand. However, the
behavior of the rotational projection comes as a surprise for
several reasons. First, there is apparently a delayed onset of
rotational coupling to the solvation energy gap; rotations make
no contribution to the nonequilibrium solvation dynamics at
early times. Second, the rotational projection shows two distinct
relaxation regimes: an early-time regime (t < ∼700 fs) with a
negative slope, indicating that rotational motions cause a
decrease of the solvation energy gap, followed by a slower
regime (t > ∼700 fs) with a positive slope, indicating that
rotational motions at these times cause the solvation energy gap
to becomelarger. This means that solvent rotational motions
during the second regime either stabilize the unoccupied anion
state or destabilize the newly created neutral solute (or both).
The fact that a subset of the nonequilibrium solvent motions
can work to increase the solvation energy gap whereas the rest
work to lower it is highly counterintuitive, especially given that
this type of effect cannot be present in equilibrium dynamics.
Finally, at long times, the rotational projection contributes
nothing to the overall change in the nonequilibrium energy gap,
even though at intermediate times solvent rotations modulate
the gap in a nontrivial way. We will return to the question of
what causes this unusual behavior for solvent rotations below
in section IV.C.

In addition to projecting the contributions of molecular
motions, we can also explore how each portion of the pairwise
solute-solvent interaction potential contributes to the nonequi-
librium solvation energy gap by dividing the energy into
Coulomb and Lennard-Jones (LJ) parts:∆E ) ∆ECoul +
∆ELJ.

40 The dashed curve in Figure 6b41 shows the Lennard-
Jones contribution to the solvent relaxation,SLJ(t), and the dotted
curve shows the Coulomb contribution,SCoul(t). The Lennard-
Jones projection shows relaxation on at least two distinct time
scales: a rapid component at early times (t < 400 fs) and a
slower contribution at longer times (0.5 ps< t < 3 ps), each
with roughly equal amplitude.SCoul(t) shows a similar two-time
scale behavior, although the rapid relaxation component ac-
counts for∼95% of the Coulombic contribution of the solvent
response. We note that analogous projections to these were
presented in our previous work,15 but the nonequilibrium average
for the curves in Figure 6b was performed over twice as many
trajectories.

Figure 6c shows the projections of the solvation energy gap
onto the motions of just the solute or solvent, as suggested in
section IV.A.42 The figure shows clearly that solute motion is
responsible for about half of the total relaxation dynamics.36,37

Moreover, the total solvation response (solid curve) is fully
relaxed by∼3 ps whereas bothSsolvent(t) and Ssolute(t) do not
finish decaying for∼8 ps. This shows that solvation dynamics
is a cooperative effort of the solute and solvent: the full solute-
solvent system can relax faster than is possible with motions
by either the solute or solvent alone. In fact, previous calcula-
tions have shown that the ratio of the solute and solvent masses
can determine the rate of solvation,36 emphasizing the important
role of motions of the solute. Because for our atomic solute the
full rotational projection (Srot(t) in Figure 6a) can arise only
from the solvent, we subtracted this contribution fromSsolvent(t)

to obtain the solvent-only translational projection,Ssolvent
trans (t),

shown as the dotted curve in Figure 6c.43 This curve makes it
clear that the nonequilibrium translational motions of the solute
and solvent contribute about equally to the total translational
relaxation and thus to the total system relaxation (cf. Figure
6a). We also can identify the small negative portion of
Ssolvent

trans (t) as coming from the lateral translations of the solvent
(again cf. Figure 6a).

Next, we ask how the proximity of a particular solvent
molecule to the solute determines its contribution to the solvation
energy gap. Studies of other systems have shown that the
solvation energy gap is modulated most strongly by the closest
solvent molecule to the solute14,36,44or by a collective effort of
the 6-12 solvent molecules in the first solvation shell.45-47 To
see how the nearby solvent molecules couple toS(t) in our
system, we calculated projections of∆E onto both nearest-
neighbor and first-shell solvent molecules.48 Because of diffu-
sion, the locations of solvent molecules change during the
nonequilibrium dynamics, so we calculated these projections
using two different methods. In the first method, we determined
the identity of the nearest neighbor (or first shell) molecule(s)
at t ) 0, and calculated the contribution of these molecules to
the solvation gap throughout the trajectory (even if the
molecule(s) diffuse away from the solute at later times). In the
second method, the identity of the nearest neighbor (or first
solvent shell) was updated at each time step, even if diffusional
exchange switched the identity of the molecules. The two
methods gave dramatically different results for the nearest-
neighbor projection, which accounts for only∼6% of the total
relaxation using the first method but over∼20% of the
relaxation using the second. In contrast, we found little
difference between the two methods for the projection onto the
first-shell solvent molecules, both of which indicated that the
first solvent shell is responsible for∼80% of the total relaxa-
tion.49 This leaves longer-ranged Coulomb interactions from
solvent molecules beyond the first solvent shell to account for
the remaining∼20% of the total solvation dynamics.

C. Building a Microscopic Picture of Nonequilibrium
Solvation Dynamics.How do all these different projections fit
together to present a unified picture of the nonequilibrium
solvation dynamics for this system? In the previous section, we
showed that longitudinal center-of-mass translations of the
nearby solvent molecules are responsible for most of the
relaxation dynamics and that the lateral translations (which
decayed on a separate time scale from the longitudinal transla-
tions) contributed very little to the total solvation dynamics.
Figure 6a showed that the contribution from solvent rotations
also has two components: a short-time process that decreases
the solvation energy gap followed by a longer-time process
during which the solvation energy gap increases. Moreover, the
projection of S(t) onto the LJ part of the solute-solvent
interaction potential (Figure 6b, dashed curve) showed two
different relaxation regimes. Finally, the bulk of the Coulomb
projection (Figure 6b, dotted curve) relaxed on two more time
scales. Although it is not immediately obvious how rotations
and translations affect the solvation energy gap via the LJ and
Coulomb interactions, it is clear that there are at least four
different relaxation time scales: two rotational time scales plus
one longitudinal and one lateral translational time scale from
the projections in Figure 6a, or two Lennard-Jones and two
Coulomb time scales from the energy projections in Figure 6b.
These time scales must correspond to at least four different
mechanisms for the nonequilibrium solvation dynamics. This
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leads us to conclude that our nonequilibrium projections have
uncovered at least four distinct underlying relaxation regimes.

To build a molecular picture of the motions underlying each
of the distinct relaxation regimes, we have computed dynamic
radial distribution functions (RDFs) to investigate how the local
solvation structure changes with time following excitation. To
calculate time-dependent RDFs, each nonequilibrium trajectory
was broken into 100 fs segments, and the averaged RDF from
each segment was then further averaged over the 400-trajectory
ensemble; the results are shown in Figure 7a. Figure 7 also
shows the equilibrium RDF for the excited-state solute (neutral,
t ) +∞, thick solid curve). To make the structural changes clear,
we also show the difference between the time-dependent RDFs
and the equilibrium RDF for the ground-state solute (anion,
t ) 0, thin solid curve) in Figure 7b. The rising probability
peak at∼4.8 Å of panel b shows the influx of solvent molecules
forming the first solvent shell around the newly created neutral
solute, whereas the growing probability deficit at∼5.2 Å shows
the loss of the solvent structure imposed by the formerly
occupied ground-state anion. Together, parts a and b of Figure
7 show that restructuring of the solvent around the smaller,
neutral excited state is nearly complete after∼650 fs; little
additional rearrangement of the solvation structure takes place
between 650 and 1150 fs (not shown). This allows us to assign
the early-time (e650 fs) portion of the translational relaxation
to the rapid inward motion of the nearby solvent molecules,
accounting for∼50% of the total translational relaxation (cf.
Figure 6a,Slong(t) at t ) 650 fs).

Figure 7 also makes it clear that the remainder of the
nonequilibrium translational relaxation, which occurs on time
scales longer than∼650 fs, results from minor rearrangements

of the entire solvent structure. This larger scale repacking does
not begin to take place until after (most of) the new first solvent
shell structure is complete, so that the slower translational
relaxation component occurs on diffusional time scales. We
believe that the delayed onset of this long-time translational
repacking results from the fact that the first solvent shell must
translate inward before the second solvent shell can rearrange,50

as documented in previous studies of solvation dynamics.14,51,52

Now that we see how translational solvent motions underlie
the nonequilibrium relaxation, we can reconsider Figure 3, which
showed thatC0(t) and S(t) look very similar at times longer
than∼1 ps. This similarity likely results from the fact that the
final restructuring and fine-tuning of the solvent structure
(including some of the first shell) in the nonequilibrium
simulations lies within the LR approximation. By comparing
the longitudinal (not shown) and Lennard-Jones projections for
the equilibrium neutral simulations with those in Figure 6a,b,
we find that the long-time (t > 0.9 ps) dynamics ofC0(t) are
nearly the same as the longitudinal and LJ projections inS(t).
Moreover, Figure 8 shows that the LJ projections of the long-
time relaxation dynamics ofC0(t) andS(t) are virtually identical.
This suggests that after∼1 ps, the solute-solvent relaxation in
the nonequilibrium simulations behaves as though the system
is near equilibrium around the neutral solute. Thus, this long-
time agreement is effectively in the linear response limit (and
not a coincidence!15).

Up to this point, we have seen that translations account for
two of the four relaxation processes seen in the nonequilibrium
solvation dynamics of this system (rapid translations that
establish most of the neutral solvation structure and slower,
diffusional translations that complete the solvation dynamics;
Figures 6a and 7). The remaining two relaxation mechanisms
result from solvent rotational motions. In section III.B we
pointed out that modulation of the unoccupied state can
contribute as much or more to the dynamics of the solvation
energy gap as modulation of the occupied state. For the
nonequilibrium simulations considered here, the destabilization
of the (unoccupied) ground-state anion following excitation is
∼50 times larger than the stabilization of the (occupied) excited-
state neutral. This means that we only need look at the dynamics
of the energy of the unoccupied state, the anion-solvent

interaction energy,Eanion(t), to understand the nonequilibrium
relaxation of the full solvation energy gap.53 Consideration of
only the anion solvation energy fits well with our arguments

Figure 7. For the reaction of Scheme 1, (a) showing time-dependent
nonequilibrium solute/solvent center-of-mass radial distribution func-
tions (RDF) and (b) showing the differences between the ground-state
(anion) RDF and the various time-dependent RDFs of (a). In both
panels, thet ) 0 (thin solid curves) RDF is calculated from the 200 ps
equilibrium trajectory with the anionic (ground state) solute. Likewise,
the t ) +∞ (thick solid curves) RDF is calculated from the 200 ps
equilibrium trajectory with the neutral (excited state) solute. The
remaining curves are calculated by averaging over the 400 nonequi-
librium simulations. Each nonequilibrium RDF is calculated over a short
(100 fs) block. For example, thet ) 650 fs (dashed curves) RDF is
the average RDF using the 600-700 fs block in each of the
nonequilibrium trajectories. Note that for clarity we only show thet )
50 fs (dotted curve) difference curve in (b) and not the corresponding
time-dependent RDF in (a). The peaks in (b) show where solvent density
is increasing; the valleys in (b) show where solvent density is
decreasing.

Figure 8. Projections of the nonequilibrium and equilibrium solvation
response functions.C0(t) (solid curve, eq 2, same as dashed curve in
Figure 3) is the equilibrium solvation response for the neutral solute
(and the unoccupied excited state is the anion).C0,LJ(t) (dashed curve)
is the Lennard-Jones projection ofC0(t). SLJ(t) (dash-dot curve, same
as dotted curve, Figure 6b) is the Lennard-Jones projection of the
nonequilibrium response function. The agreement betweenC0,LJ(t) and
SLJ(t) at long times (t > ∼1 ps) is not coincidental; rather, it indicates
that the dynamics fall within the limit of linear response; see text.
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that inward translation of the first-shell solvent molecules
provides most of the relaxation of the gap: the solute-solvent
translations that provide a slight stabilization of the neutral
quickly lead to unfavorable interactions on the steep repulsive
Lennard-Jones wall of the larger ground-state anion. In what
follows, we will elucidate the contributions of solvent rotations
to the nonequilibrium dynamics by investigating how rotational

motions affectEanion(t).
Figure 9 shows the total (un-normalized) energy of the

unoccupied anion state,Eanion(t) (dashed curve). This curve is
nearly identical to the relaxation of the total solvation energy
gap, S(t) (solid curve in Figure 3); the slight differences are
due to the small changes in the solvation energy gap resulting
from stabilization of the neutral. The various dotted and dashed
curves in Figure 9 show different projections of the (un-
normalized) energy of the unoccupied anion state; for clarity,
all of the curves in Figure 9 have been shifted to asymptotically
approach zero in the long-time limit. The figure shows that both

the Lennard-Jones projection (ELJ
anion(t), solid curve) and the

Coulomb projection onto solvent rotations (Erot,Coul
anion (t), dotted

curve) destabilize the anion, resulting in a decrease of the

solvation energy gap.54,55 Moreover,Erot,Coul
anion (t) increases on a

time scale that matches well with the early-time stabilization
of the solvation energy gap evident forSrot(t) (cf. Figure 6a,
dashed curve). In contrast, the anion solvation energy is
stabilized by rotational contributions of the anion-solvent

Lennard-Jones interaction (Erot,LJ
anion(t), dash-dot curve).56 The

rotational Lennard-Jones contribution (Erot,LJ
anion(t)) has a slower

decay thanErot,Coul
anion (t), so we assign the second rotational time

scale in Figure 6a to rotations by first-shell solvent molecules
that increase the solvation energy gap via the LJ interaction.

How can we rationalize the fact that the LJ and Coulomb
interactions resulting from first-shell rotational solvent motions
not only have opposing effects on the solvation energy gap but
also act on different time scales? In section III.A, we calculated
equilibrium angular distributions around the ground- and
excited-state solutes (Figure 5) and found that, on average, less
than one more first-shell solvent dipole points toward the neutral
solute than points toward the anionic solute.33 Thus, the solvent
rotational motions that matter most to∆E must be those that
(on average) move the negatively charged oxygen site on the
one “anomalous” first-shell solvent molecule closer to the anion
(i.e., the THF dipole rotates from pointing “away” to pointing
“towards” the solute, as per the convention in Figure 5b). As
soon as this rotational motion begins, the unfavorable Coulomb
interaction with the oxygen site should destabilize the anionic
solute and thus decrease the solvation energy gap. This
destabilization acts rapidly because only small rotations of the
dipole are necessary to decrease the gap, so we assign the early-
time rotational relaxation mechanism to this rapid rotational
motion that destabilizes the anion state via the Coulomb
interaction.

After causing the early-time destabilization of the anion
solvation energy, however, the anomalous THF molecule
continues to rotate, and the end result is an increase in the
number of THF oxygen sites pointing toward the solute. Indeed,
in section III.A, we calculated the solute-oxygen RDFs and
found that the THF oxygen-solute distance decreases more than
the THF center-of-mass-solute distance (cf. Table 2 and Figure
4b). This increase in the number of proximal THF oxygen sites
comes at the expense of having to move THF methylene sites
away from the solute. Because the THF oxygen-site LJ size
parameter is∼1 Å smaller than the corresponding methylene-
site size parameter (cf. Table 1), the long-term result of solvent
rotations is to replace larger solvent sites near the solute with
smaller solvent sites. This produces a decrease of (part of) the
Lennard-Jones interaction energy with the unoccupied anion
state, thereby increasing the solvation energy gap. In combina-
tion, Figures 5a and 7 show that rotational motions have no net
effect on the solvation energy gap: the rotations first quickly
destabilize the anion via the Coulomb interaction, but on a longer
time scale, rotations lead to Lennard-Jones interactions with
smaller solvent sites that provide a roughly equal amount of
stabilization.

It is important to remember that these solvent rotations work
to solvate the small neutral excited state and are not driven in
any way by the unoccupied anionic ground state. The fact that
rotational motions cause smaller sites to interact with the neutral
and also result in a slight decrease in the energy of the
unoccupied anion is coincidental. However, because the overall
energy of the anion state increases so dramatically, this small
effect (of opening the energy gap) is not observed without the
method of projections presented in section IV.A and ref 15.

V. Conclusions

In summary, we have calculated many of the important
equilibrium and nonequilibrium dynamical properties of Jor-
gensen’s model of liquid THF. We found that all of the
rotational and translational degrees of freedom in THF relax
on similar time scales. We also studied the nonequilibrium
solvation dynamics resulting from the removal of charge from
an anionic atomic solute in THF. Because the time scales for
translational and rotational relaxation are similar, we had to

Figure 9. Nonequilibrium projections (eq 9b) of the un-normalized
anion-solvent interaction energy as a function of time after excitation.

The overall energy of the anion (Eanion(t), dashed curve) increases with
time, thereby decreasing the total solvation energy gap (E(t)). The

Lennard-Jones (ELJ
anion(t), solid curve) and Coulomb (ECoul

anion(t), not
shown) projections of the anion-solvent interaction energy are nearly
the same as the corresponding projections of the total solvation energy

gap in Figure 6b.ECoul
anion(t) is not shown because the projection of

Coulomb interactions onto solvent rotational motions (Erot,Coul
anion (t),

dotted curve) is nearly the same asECoul
anion(t). We assign these (Cou-

lomb-based) rotational motions to the first of two distinct nonequilib-
rium relaxation mechanisms that come from solvent rotations (see text).
The projection of LJ interactions onto first-shell solvent rotational

motions (Erot,LJ
anion(t), dash-dot curve)56 shows a decrease of the energy

of the anionic state. This means that the solvation energy gap is
increasing with time and we assign this process to the second rotational
relaxation mechanism (see text). All of these curves were calculated
using a subset of only 49 of the nonequilibrium trajectories, and all of
the rotational projections were calculated from eq 9b.34
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project the solvation energy gap onto various molecular motions
to uncover how specific degrees of freedom contributed to the
solvation dynamics. In combination, the results led to a picture
in which the bulk of the relaxation was caused by relative
translations of the solute and solvent. The initial translational
relaxation resulted from rapid solute-solvent translations due
to the size decrease of the solute upon excitation. The longer-
time translational relaxation was due to a subtle, whole-system,
repacking on diffusional time scales. We also found an unusual
cancellation in the solvent rotational projections that led to no
net change in the solvation energy gap; early-time rotational
motions rapidly decreased the gap via the Coulomb interaction,
but the solvation energy gap was also slowly increased via
favorable Lennard-Jones interactions between the anionic solute
and the smaller oxygen site on THF.

With the molecular picture summarized above, we are now
in a position to understand the reason for the breakdown of LR
in this system, and why (without projection analysis) the
breakdown is hidden. LR breaks down because the excited-
state solute allows the solvent to sample a different configuration
phase space than the ground state: due to its larger size, the
ground-state anion prevents the solvent from modulating the
solvation energy gap at distances between 3.3 and 4.2 Å (cf.
Figure 7). Because this is a region around the excited-state
neutral that has an appreciable density of solvent molecules,
LR cannot possibly be a valid approximation for this system.
The coincidental agreement betweenS(t) andC-(t) in Figure 3
stems from the fact that the rotational and translational motions
of THF occur on similar time scales, as seen in Figure 2. This
means that no matter how the different translational and
rotational motions couple to the energy gap, the equilibrium
and nonequilibrium solvent response functions will tend to decay
on similar time scales.

Finally, we close by reiterating that this work was motivated
by femtosecond experiments of the charge-transfer-to-solvent
reaction of the sodium anion in THF being performed in our
lab.7 In particular, our experimental work indicates that detach-
ment of electrons from sodium anions in THF takes ap-
proximately 700 fs. If the model for THF that we have employed
here is accurate, then the 600-700 fs time scale for translational
solvation by THF could suggest that translational motions are
responsible for detachment in CTTS reactions.7 Work is
currently underway in our group to implement both one-57 and
two-electron58 mixed-quantum/classical simulations of the CTTS
reaction with sodide in this model of THF to build a molecular-
level understanding of the pump-probe experiments that
motivated this work.
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