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The hydrated electron is a unique solvent-supported state comprised of an excess electron that is confined to
a cavity by the surrounding water. Theoretical studies have suggested that two-electron solvent-supported
states also can be formed; in particular, simulations indicate that two excess electrons could pair up and
occupy a single cavity, forming a so-called hydrated dielectron. Although hydrated dielectrons have not been
observed directly by experiment, their existence has been posited to explain the lack of an ionic strength
effect in hydrated electron bimolecular annihilation [Schmidt, K. H.; Bartels, D. M.Chem. Phys.1995, 190,
145]. To determine whether dielectrons may be created in the laboratory, we use thermodynamic integration
(TI), combined with mixed quantum/classical molecular dynamics simulation, to examine the thermodynamic
stability of hydrated electrons and dielectrons. For the dielectron calculations, we solve the two-electron
quantum problem using full configuration interaction. Our results suggest that hydrated dielectrons are
thermodynamically unstable relative to separated (single) hydrated electrons, although we also show that
increasing the pressure could drive the equilibrium toward the formation of dielectrons. Because the simulations
suggest that hydrated dielectrons are kinetically stable, we also examine a scenario for creating metstable,
nonequilibrium populations of dielectrons, which involves the capture of a newly injected electron by a
preexisting, equilibrated hydrated electron. These calculations, which allow for the full nonadiabatic relaxation
of the injected electron, show that hydrated electrons may indeed act as trapping sites for unequilibrated
electrons, so that capture may be a viable mechanism for creating dielectrons. We suggest possible experimental
procedures to create such nonequilibrium hydrated dielectrons using either pulse radiolysis or ultrafast
spectroscopic techniques.

I. Introduction

The hydrated electron is a unique chemical species formed
by injecting an excess electron into liquid water by pulse
radiolysis,1 by multiphoton ionization,2 or by electron photo-
detachment of a solute (e.g., the CTTS excitation of iodide).3

The most common view is that the hydrated electron is a solvent-
supported state that occupies a nearly spherical cavity with six
water molecules in the first solvation shell,4 a picture supported
by the results of computer simulations.5,6 Continuum dielectric
calculations,7 which are consistent with the more recent simula-
tion results, suggest that the hydrated electron may be viewed
as a polaron, that is, as an electronic state stabilized by the
polarization of the surrounding solvent.

Continuum dielectric calculations also suggest that if the
solvent dielectric constant is large enough, as in water or
ammonia, the energy of two electrons confined to a single cavity
could be less than that of two (single) electrons, implying that
solvateddielectrons, or bipolarons, should be stable.8 In fact,
there is indirect experimental evidence for the formation of
bound pairs of electrons in solutions of metals dissolved in liquid
ammonia; the metal/ammonia solutions show a decrease in
magnetic susceptibility at high concentrations of excess elec-
trons, suggesting that the electrons’ spins become paired.9 Mixed
quantum/classical density functional calculations also have
suggested that bound pairs of electrons form at high electron
densities in liquid ammonia.10 In water, simulations have
shown11 that hydrated dielectrons occupy a larger, less spherical

cavity than (single) hydrated electrons. In contrast to the
ammonia simulations, where only singlet-paired electrons were
found to form dielectrons, simulations in water suggest that both
singlet and triplet hydrated dielectrons can form, and that the
dielectron’s shape depends on the total spin.12,13

To date, there has been no unambiguous experimental
confirmation of the existence of hydrated dielectrons. The
existence of hydrated dielectrons has been reported in pulse
radiolysis experiments,14 but this identification has been chal-
lenged and the signals reported as characteristic of dielectrons
have been viewed by some as artifacts.15 Interest in hydrated
dielectrons also has been stirred by the more recent pulse
radiolysis experiments of Schmidt and Bartels,16 which ex-
plained the lack of an ionic strength effect in the bimolecular
annihilation of hydrated electrons by the formation of pairs of
electrons that subsequently react with two water molecules to
evolve molecular hydrogen. Inspired by these experiments and
emboldened by recent theoretical and computer advances, we
have elected to compute the thermodynamic stability of dielec-
trons from simulation, calculating not just the energy but the
free energy of hydrated dielectrons, which includes the entropy
of solvation. In this paper, we present calculations of the free
energies of the (single) hydrated electron and the singlet
hydrated dielectron from mixed quantum/classical computer
simulation; we chose not to calculate the free energy of the
triplet hydrated dielectron because singlet dielectrons are
energetically more stable than triplet dielectrons by tens ofkBT,13
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and thus singlet dielectrons are more likely to be stable even
once entropy is taken into account.

Our approach to calculating the excess free energy of hydrated
dielectrons relative to two separated (single) hydrated electrons
is based on thermodynamic integration (TI).17 We use TI to
compute the differences in free energy among simulation cells
containing classical water and either zero, one, or two excess
electrons (with the two excess electrons bound in a single cavity
as a singlet dielectron). As far as we are aware, the results
presented here represent the first calculations of the thermody-
namic properties of an explicitly quantum mechanical hydrated
solute from mixed quantum/classical simulation and TI. Because
TI allows the calculation of Helmholtz free energies and the
internal energies are already known from simulation,13 we also
are able to calculate the entropy differences between the different
solvent-supported species. In addition, we use thermodynamic
identities to calculate the Gibbs free energy differences among
the zero, one, and two excess electron simulations, which allows
us to examine the stability of hydrated dielectrons as a function
of applied pressure.

The rest of the paper is organized as follows. Section II
describes the simulation methods we use to calculate the
thermodynamics of hydrated electrons and dielectrons. The
excess electrons are treated quantum mechanically and all
thermodynamic averages are computed from adiabatic molecular
dynamics simulations, which are based on a full configuration
interaction (CI) calculation of the two-electron adiabatic eigen-
states.13 In Section III, we review the technique of TI and
compute the Helmholtz free energies of simulated water with
zero, one, and two excess electrons. We then use thermodynamic
identities to correct for the changes in pressure caused by the
excluded-volume and electrostriction effects that occur when
electrons are added to water in a fixed-volume simulation. We
find that hydrated dielectrons are not thermodynamically stable
with respect to dissociation into two separate (single) hydrated
electrons. We have shown previously, however, that once
formed, hydrated dielectrons are kinetically stable on time scales
longer than tens of picoseconds (the longest times over which
they have been simulated).13 This kinetic stability suggests that
under nonequilibrium conditions, hydrated dielectrons could
exist long enough for the chemical processes described by
Schmidt and Bartels to take place.16 Thus, in Section IV we
describe the possibility of making a nonequilibrium population
of injected hydrated electrons that may be captured by preexist-
ing equilibrated hydrated electrons to form metastable hydrated
dielectrons. We simulate this capture process by injecting a
second electron into one of the high-lying adiabatic two-electron
eigenstates of a box containing a (single) hydrated electron, and
calculating the nonadiabatic relaxation of the two electrons to
their ground state.12 We find that as long as the second electron
is confined to be within a simulation-cell length (18 Å) of the
preexisting electron, the preexisting hydrated electron captures
the injected electron∼35% of the time to form a kinetically
stable dielectron. This suggests that pulse radiolysis production
of hydrated electrons may indeed create large populations of
dielectrons, so that our prediction that dielectrons are thermo-
dynamically unstable is not inconsistent with Schmidt and
Bartels’ results.16 Finally, we conclude in Section V with a
discussion of the significance of our results and a description
of possible experiments that may verify the production of
hydrated dielectrons via nonequilibrium capture.

II. Computational Methods

Our calculations of the thermodynamic stability of hydrated
electrons and dielectrons are based on mixed quantum/classical

(QM/CM) molecular dynamics simulations that treat the water
molecules classically and the excess electron(s) quantum
mechanically. We have described our approach to such QM/
CM simulations in detail elsewhere,12,13so we give only a short
summary here. The simulations take place in a cubic box 18.17
Å on a side containing 200 classical, flexible water molecules
that interact through SPC-flex potentials18 and zero, one, or two
quantum mechanical electrons that interact with the water
molecules via a pseudopotential derived by Schnitker and
Rossky.19 Other pseudopotentials have been developed that
produce better agreement with the experimental spectrum of
hydrated electrons,20 but for the purposes of comparison to
previous work, we chose to use Schnitker and Rossky’s pseudo-
potential.21 Minimum-image periodic boundary conditions22

were used for the classical solvent-solvent interactions, and
all of the interactions were smoothly tapered to zero at half the
box length.23 The positions and velocities of the classical water
molecules were propagated by using the velocity Verlet
algorithm,22 with a time step of 1 fs.

The QM part of the problem is solved by using a similar
approach for both one and two excess electrons. For one excess
electron, at each solvent configuration we use an iterative and
block-Lanczos procedure to find the ground adiabatic eigenstate
on a 16× 16 × 16 cubic grid.24 The charge density of this
ground state is used to determine the force the electron exerts
on the classical solvent molecules according to the Hellmann-
Feynman formula. For two excess electrons, whose spins we
take to be singlet paired, we use the two-electron charge density
to compute the Hellmann-Feynman force. For each solvent
configuration, we find the two-electron charge density by first
solving for the lowest 10 adiabatic single-electron eigenstates
on a 163 grid as described above, and then constructing the two-
electron eigenstates using configuration interaction (CI) as
described in ref 12. Because the electrons are singlet paired,
the CI calculations use a two-electron product basis constructed
from all spatially symmetric combinations of the lowest 10
single-electron eigenstates, for a total of 55 product basis states.
We compute the Coulomb and exchange energies in this basis
with an efficient real-space quadrature.12 To further speed up
the CI calculations, we also make use of what we have called
the important states approximation,12 in which the two-electron
problem is solved by using a restricted set of product-basis states
and the full CI matrix is constructed only infrequently (in this
case, every 3 fs) to determine the best restricted basis set to
use. The full CI two-electron molecular dynamics calculations
reported here take approximately 3 days of computational effort
per picosecond of simulated dynamics on a single-processor
AMD Athlon XP 1700 workstation.

For the nonequilibrium, nonadiabatic simulations of electron
capture described in Section IV, we used the mean-field with
surface hopping (MF/SH) algorithm of Prezhdo and Rossky.25

Our particular modification of the algorithm for use with two
quantum particles is described in ref 12; further details of how
we perform nonequilibrium, nonadiabatic full CI simulations
of dielectrons can be found in ref 26.

III. The Thermodynamics of Hydrated Electrons and
Dielectrons

In previous work, we calculated the average energies of
singlet dielectrons and (single) hydrated electrons from mixed
quantum/classical simulations; the values we obtained are
summarized in Table 1. The ca.-6 eV energy of the spin singlet
dielectron is fully ∼0.5 eV lower than the energy of two
infinitely separated electrons, so that energetically, the singlet
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hydrated dielectron would appear to be stable. This is precisely
the reasoning used in the continuum calculations that predicted
dielectrons,8 but this reasoning is not valid because it does not
take into account the energetic changes in the interactions
between water molecules that occur when the water rearranges
to solvate the excess charge. For example, Table 1 shows that
although the quantum energy of the (single) hydrated electron
is ∼2.7 eV below the gas-phase continuum energy, the total
internal energy of the system,Eint ) EQM + Vaq, is only ∼1.2
eV less than neat water. Thus, it costs neat water∼1.5 eV to
form a cavity and solvate the electron, but the favorable
electron-water interactions more than make up the penalty. To
perform a similar analysis for the hydrated dielectron, we must
compare the total energy of a simulation containing only water
plus the energy of one containing a hydrated dielectron to twice
the energy of a simulation of water containing a (single)
hydrated electron. The internal energies in Table 1 show that
the dielectron/water system is∼2.6 eV higher in energy than
two separated (single) hydrated electrons. Evidently, the water
structure is broken so much in solvating a hydrated dielectron
that the favorable solvation energy cannot make up the
difference. Thus, despite the fact that the energy of the singlet
dielectron’s ground state is∼0.5 eV less than the ground state
energy of two (single) hydrated electrons, we conclude that
dielectrons should not be considered energetically stable.

In view of the significant energetic instability of singlet
hydrated dielectrons, it is clear that the only way this species
can be stable is if there is a large entropic increase associated
with dielectron formation: In other words, thefree energy of
the dielectron must be less than that of two (single) hydrated
electrons. Therefore, to fully examine the question of dielectron
stability, we must calculate the entropy difference between two
(single) hydrated electrons and a hydrated dielectron. With the
finite size of our simulation cell it does not make sense to
examine stability by comparing the free energy of a dielectron
in a single simulation cell to that of two separated electrons in
the same small cell: In such a calculation, a significant fraction
of the free energy could end up coming from nontrivial
interactions between the water molecules in the first solvation
shells of the separate hydrated electrons. We choose, therefore,
to calculate the free energy of 200 water molecules at a standard
temperature and density, the free energy of the same 200 water
molecule simulation cell with a single excess electron, and the
free energy of the cell with two excess electrons bound together
in the form of a dielectron. We will then determine thermody-
namic stability by comparing the free energies of two pairs of
simulation boxes: one pair with a single electron in each box,
and the other pair with a dielectron in one box and only water
in the other box. These simulation cell pairs are illustrated
schematically in Figure 1.

We denote the Helmholtz free energy of a simulation cell
consisting of water andi excess electrons byAi. The difference
in free energy,∆A, between a dielectron and two separated
electrons for the two-simulation-box scenario is

wherekB andT are Boltzmann’s constant and the temperature,
respectively, and the last term arises from the two ways of
choosing which box will have the dielectron. The sign of∆A
in eq 1 determines the stability of the hydrated dielectron. The
multiple box idea may be easily generalized to calculate the
free energy of a system containing many electrons and dielec-
trons by envisioningN boxes of water, withM1 of these
containing a (single) hydrated electron,M2 containing a hydrated
dielectron, and the remainder containing only water:

TABLE 1: Calculated Thermodynamic Parameters for Neat (SPC/Flex) Water, Water with a Single Hydrated Electron, and
Water with a Spin-Singlet Dielectron29,a

neat water (eV) electron (i ) 1) dielectron (i ) 2)

EQM (eV) -2.74(0.14) -5.99(0.17)
Vaq (eV) -88.64(0.17) -87.06(0.17) -82.38(0.56)
Eint (eV) -88.64(0.17) -89.80(0.22) -88.37(0.59)
Ai(N,V,T) - Ai-1(N,V,T) (eV) -0.38(0.09) 1.25(0.13)
T[Si(N,V,T) - Si-1(N,V,T)] (eV) -0.78(0.29) -0.18(0.64)
pCL

iV (eV) -1.19(0.12) 2.59(0.37) 8.27(0.96)
pQM

iV (eV) -3.71(0.04) -11.68(0.21)
pi (atm) -282(35) -298(95) -898(253)
Gi(N,p0,T) - Gi-1(N,p0,T) (eV) -0.38(0.09) 1.22(0.13)

a The two standard deviation errors are given in Parentheses. In the conversion top0, we use the experimental compressibility of liquid water,
not the (smaller) compressibility found in our simulations (see discussion in section III.B)

Figure 1. Schematic of the pairs of simulation boxes used to determine
thermodynamic stability of hydrated dielectrons relative to two (single)
hydrated electrons (cf. eq 1). The upper two boxes represent two
separate simulation cells, each of which contains one excess electron.
The lower two boxes represent two simulation cells, one of which
contains two excess electrons in the form of a singlet dielectron, and
the other of which contains only water.

∆A ) A2 + A0 - 2A1 - kBT log 2 ) (A2 - A1) -
(A1 - A0) - kBT log 2 (1)

A(N,M1,M2) ) NA0 + M1(A1 - A0) + M2(A2 - A0) +
kBT[log(N - M1 - M2)! + log M1! + log M2! - log N!]

(2)
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where the choiceA(2,0,1) - A(2,2,0) in eq 2 reproduces the
free energy difference given in eq 1. For a given concentration
of electrons per simulation cell,M1/N, one can find the
concentration of dielectrons by minimizing the free energy with
respect toM2, leading to the usual formula for the equilibrium
constant of a bimolecular reaction.

In the next subsection, we describe the theoretical methods
used to calculate the Helmholtz free energy differences needed
for use in eqs 1 and 2. None of the calculations include
contributions to the free energy from the spin of the electrons
(spin is included only in the symmetrization requirement for
the wave function of the singlet dielectron), so we add-kBT
log 2 to the simulated free energy of the single-electron
calculations to account for the two possible spin states of the
unpaired (single) electron. The analogous change for many
electrons would be to add-M1 kBT log 2 to eq 2.

A. Calculation of Helmholtz Free Energies from Ther-
modynamic Integration. Given a canonical partition function,
ZH, of a system described by a HamiltonianH, the Helmholtz
free energy,AH, is

whereZH ) Tr{e- âH} and Tr denotes the trace operation, which
sums and integrates over all possible values of all of the degrees
of freedom. It is well-known that absolute free energies can be
difficult to compute by simulation, but free energy differences
may be found by using the trick of themodynamic integration
(TI), also called “charging”.17 In brief, TI finds the free energy
difference between two systems, one described by a Hamiltonian
H0 and the other by a HamiltonianH0 + H ′, by considering a
fictitious HamiltonianH ) H0 + λH ′; H ′ is called the charging
potential. By taking the derivative of the free energy with respect
to λ, and using the fact that the operations all take place inside
a trace so that factors such asH0H ′H0 can be reordered into
the formH ′H0H0, one finds that dAH/dλ ) 〈H ′〉H0+λH ′, where
the brackets denote an equilibrium average and the subscript
indicates the Hamiltonian used for the averaging.27 With the
fundamental theorem of calculus, this implies that,17

Equation 4 shows that the difference in free energies between
different systems can be found by smoothly changing one system
into the other (we call each realization of such a change a “path”)
and calculating the average charging energy,〈H ′〉H, along the
path in an equilibrium simulation. As mentioned above, our
calculations do not explicitly include entropic factors due to
spin, so at room temperature the free energy of an unpaired
electron would bekBT log 2 = 0.017 eV less than the value
found from charging; this correction, however, is much smaller
than the statistical error of the simulations.

To find the free energy differences needed in eqs 1 and 2,
we perform TI using the following pathways:

whereHw denotes the Hamiltonian for the classical degrees of
freedom,Hi denotes the Hamiltonian for excess electroni,
including its interaction with the water molecules, andV12

denotes the electron-electron interaction. The first pathway,
eq 5a, takes us from a box containing only water molecules to
one that also has a single excess electron. The second pathway,
eq 5b, slowly adds a second electron but does not include the
repulsion between the two electrons, and the third pathway, eq
5c, turns on the interaction between the electrons. The charging
pathway from one to two electrons was split into two legs
because we found initially that charging along a single path,

led to final configurations having two separate hydrated electrons
in the simulation cell. Later tests revealed that the production
of two (single) hydrated electrons was caused by a programming
error that doubled the electron-electron repulsion. By the time
this error was discovered, the charging calculations along the
two legs had been completed. We also have run less extensive
calculations using the pathway given by eq 6 and we find the
same value forA2 - A1 as obtained using eqs 5 to within the
simulation error.

Figure 2 displays the charging energy as a function ofλ for
each of the three charging pathways described by eqs 5a-c.
Each point was generated by changingλ and running with
HamiltonianH(λ) until the system reached equilibrium, typically
1-4 ps. For each value ofλ, the charging energy was then
calculated over an additional 10 ps trajectory for the paths given
by eqs 5a and 5b, and over an additional 3 to 6 ps trajectory

Figure 2. Average charging energies as functions of integration
parameterλ for thermodynamic integration along the pathways given
by eqs 5a (panel a), 5b (panel b), and 5c (panel c). The integrals over
λ of these curves (eq 4) are reported in Table 1. The error bars shown
are two standard deviations.

A2 - A1: H ) Hw + (H1 + H2)/2 + λ[(H1 + H2)/2 + V12]
(6)

AH ) - kBT log ZH (3)

AH0+H ′ - AH0
) ∫0

1
dλ 〈H ′〉H0+λH ′ (4)

A1 - A0: Hel(λ) ) Hw + λH1 (5a)

Ã2 - A1: Hdiel(λ) ) Hw + (H1 + H2)/2 + λ(H1 + H2)/2
(5b)

A2 - Ã2: Hdiel(λ) ) Hw + H1 + H2 + λV12 (5c)
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for the path given by eq 5c, and the average and standard
deviation of the mean was computed.28 The average for the full
dielectron (λ ) 1, bottom panel of Figure 2) was taken from
the 30-ps equilibrium simulation described in ref 13, and the
average single-electron value came from a 60-ps adiabatic
simulation. The integrals overλ required to calculate the free
energy differences, eq 4, were performed by using an extended
Simpson’s rule, and the results of integrating the data in Figure
2 (eq 4) are given in Table 1. The large positive value of∆A )
1.6 eV ) A2 + A0 - 2A1 implies that singlet dielectrons are
thermodynamically unstable.

B. Pressure Correction and Gibbs Free Energies.The
Helmholtz free energy differences calculated above are not the
desired quantities to predict stability for constant pressure
experiments. Unfortunately, the volume of our simulation cells
is not large enough for the pressure fluctuations in the
isothermal, isochoric (N,V,T) ensemble to be small enough that
the results would be equivalent to those from the isothermal,
isobaric (N,p,T) ensemble. In view of the volume taken up by
the electron and dielectron, it is possible that the pressure in
the liquid changes by enough to shift the equilibrium at constant
volume. Therefore, in this subsection, we change ensembles and
calculate the stability of dielectrons at fixed pressure, effectively
converting our Helmholtz free energies,Ai, to Gibbs free
energies,Gi,

where pi is the average pressure in the appropriate (N,V,T)
simulation; the way this pressure is calculated using the virial
is described in the Appendix. Stability at a common pressure,
p, is determined (cf. eq 1) by the sign of the Gibbs free energy
difference,

which requires the set ofGi at distinct pressurespi to be
converted into a set ofGi for a common pressure,p. This
conversion, which depends on both the simulated pressures and
compressibilities of our system, is performed by using eq A3,
as described in the Appendix.

The pressures for our neat water, single hydrated electron,
and singlet dielectron boxes were computed from trajectories 2
ns, 200 ps, and 30 ps long, respectively; the average pressure
values are given in Table 1 and the pressure probability
distributions are shown in Figure 3. Figure 3 and Table 1 make
it clear that adding an excess electron to water causes an increase
in pressure due to water-water interactions (p1

CL) but a
decrease in pressure due to electron-water interactions (p1

QM),
the result of electrostriction. Adding a second electron to form
a dielectron further increases the pressure due to water-water
interactions (p2

CL), but the pressure decrease due to electro-
striction increases greatly in magnitude, leading to a larger total
pressure change on converting a (single) hydrated electron into
a dielectron (-600 atm) than comes from adding a hydrated
electron to neat water (-18 atm).

The pressure fluctuations shown in Figure 3 allow the
calculation of the adiabatic compressibility,κS, for SPC/Flex
water; as discussed in the Appendix, we find thatκS ) 0.7 ×
10-10 m2/N, roughly one-eighth the experimental compress-
ibility. This implies that finite size effects on the pressure in
our simulations should besmallerthan those in models having
more realistic compressibilities. Equation A3 suggests that the
correction to the Gibbs free energy difference will be small, so

to maximize the possibility that the pressure correction will
stabilize the dielectron, we use theexperimentalisothermal
compressibility,κT ) 4.6× 10-10 m2/N,30 to correct the Gibbs
free energy difference,∆G. Plugging the experimental com-
pressibility and the calculated pressures into eq A3 gives a linear
stability curve as a function of (p - p0) with a slope of-9.9×
10-5 eV/atm. The negative slope means that although separated
(single) hydrated electrons have a much lower Gibbs free energy
than a dielectron, increasing the pressure can drive the equi-
librium toward dielectron formation, in accord with Le Chat-
elier’s principle. The small magnitude of the slope, however,
tells us that for near-ambient pressures, the pressure corrections
are small and thus hydrated dielectrons are still expected to be
thermodynamically unstable.

C. Discussion.Since the pressure corrections make little
difference to the stability, the conclusion of our TI calculations
seems clear: Dielectrons are thermodynamically unstable. What,
then, is to be made of the experimental indications that they
exist?16 One possibility is simply that our model is inadequate,
possibly due to errors in the pseudopotential used for the
electron-water interaction. We view this possibility as unlikely
because the calculated free energy difference is so large that it
is difficult to see how reasonable changes to the pseudopotential
will be able to shift the energies or entropies by enough to make
much difference. Another possibility is that although dielectrons
are thermodynamically unstable, they might be kinetically stable
if a nonequilibrium population of dielectrons was formed. We
will examine how one might form such an athermal population

Gi(N,pi,T) ) Ai(N,V,T) + piV (7)

∆G ) G2(N,p,T) + G0(N,p,T) - 2G1(N,p,T) - kBT log 2
(8)

Figure 3. Distribution of pressures for neat (SPC/flex) water (panel
a), water with a hydrated electron (panel b), and water with a singlet
hydrated dielectron (panel c); the pressures are calculated by using both
classical and quantum contributions from the virial (eq A1).
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in the next section. Finally, the species observed by Schmidt
and Bartels may be a complex of two nearby (single) hydrated
electrons, rather than a dielectron confined to a single cavity.

Using the total internal energies (classical potential plus
quantum) of the different simulation boxes, one can compute
the differences in entropy among the different systems, as shown
in Table 1. We note that the entropy and free energy differences
for hydrated electron solvation we report here cannot be
compared directly to those reported experimentally,31 because
we take the zeroes of free energy and entropy to be the state
consisting of neat water, whereas the experiments take the zero
to be that of the hydrated proton.32 The negative free energy
difference that accompanies addition of an electron to neat water
is caused by the 1.16 eV decrease in the internal energy of the
system, although this decrease is compensated by the 0.78 eV
increase in free energy due to the smaller entropy of the electron-
plus-water system. Changing from one electron to two electrons
entails no entropic cost within the error of our simulations. The
instability of the singlet dielectron is therefore caused by the
energy penalty paid by the water to solvate the larger, less
spherical dielectron. The extra solvation allowed by having more
waters in the first solvation shell makes the ground-state energy
of the dielectron ca.-6.0 eV, fully 0.5 eV less than the ca.
-5.5 eV of a two separated hydrated electrons,13 but this is
more than compensated by the 3.1 eV increase in the water-
water potential. Apparently, the attractive energy due to
electrostriction is outweighed by the disruption of solvent
structure caused by the larger volume of the dielectron, with
entropy playing no significant role.

IV. Capture Mechanism for Hydrated Dielectron
Formation

Given that our calculations indicate that hydrated dielectrons
are thermodynamically unstable relative to widely separated
(single) hydrated electrons, forming hydrated dielectrons in the
laboratory cannot be a matter of creating a large concentration
of (single) hydrated electrons and waiting for an equilibrium
population of dielectrons to form. In this section, we consider
an alternative mechanism that would allow creation of a
nonequilibrium, metastable population of dielectrons. Our idea
is that a (single) hydrated electron provides an attractive well
that can capture an additional electron if a nonequilibrium (free)
electron were in the vicinity. In the absence of electron-electron
repulsion, the polarization of the water surrounding a preexisting
hydrated electron is highly attractive for a free electron, so the
question is whether this attraction is enough to overcome the
repulsion between electrons. It is straightforward to calculate
the repulsion between two electrons in a (single) hydrated
electron cavity, but such a calculation would not include the
extra stabilization caused by changes in the size and shape of
the cavity upon forming the dielectron. Thus, in this section,
we study the capture of an excess electron by a preexisting
(single) hydrated electron. We do this by modeling the injection
of additional electrons into a preexisting population of hydrated
electrons, including both the nonadiabatic relaxation of the two
electrons and the relaxation of the solvent. Experimentally, one
might imagine a pulse radiolysis experiment producing just such
a situation: Electrons produced by the leading edge of the pulse
may have equilibrated by the time additional electrons are
produced by the trailing edge of the pulse. One also could
envision creating a population of electrons by using an ultrafast
laser pulse and then creating more electrons with a second pulse
a few picoseconds later, after the electrons from the first pulse
had equilibrated.

Our modeling of this hypothetical capture process starts by
taking equilibrated (single) hydrated electron configurations and
adding a second electron to the box in an excited state; we take
the initial electronic configuration to be the fourth dielectronic
state, because this state consists largely of configurations having
one electron in the ground single-electron state and the other
electron in several of the delocalized single-electron states from
the continuum. After the injection, the two-electron system,
which was constrained to be spin singlet at all times, was
allowed to relax nonadiabatically to equilibrium.33 In seven out
of twenty runs the two electrons relaxed to form a dielectron,
and in the other runs the system formed two separated hydrated
electrons.

Figure 4 displays the results of two of the injection runs; the
panels on the left show a trajectory in which the injected electron
was captured by the preexisting electron to form a dielectron,
whereas the panels on the right show one of the trajectories in
which the injected electron was not captured. The upper left
panel shows the dynamical history of the adiabatic energy levels
(depicted as alternating solid and dashed curves with the

Figure 4. Dynamical histories of two nonequilibrium injection runs,
in which a second electron is added at time zero to a simulation cell
that is already equilibrated for a single excess electron; the two-electron
system initially is taken to be in the fourth adiabatic eigenstate, as
discussed in Section IV. The panels on the left are for a run in which
the second electron is captured by the first, whereas the panels on the
right are for a run in which the second electron formed a new hydrated
electron. The upper panels display the dynamical histories of the
quantum mechanical energy levels, where the alternating thin solid and
dashed curves are the adiabatic energies and the thick solid curves
represent the energy of the mean-field wave function (see refs 12 and
25 for details). Before timet ) 0 fs, the energies are for a single excess
electron, and at later times, the energies are the two-electron energies
calculated with full CI. The middle panels show the root-mean-square
electron-electron separation for the occupied adiabatic eigenstate,
〈ψ|(r̂1 - r̂2)2|ψ〉1/2, following the injection. The bottom panels show
isodensity contours of the occupied two-electron adiabatic eigenstate
for the times indicated; the contours are taken to be at 10% of the
maximum charge density for each case; the mesh plots at time zero
indicate isodensity countours at 5% of the maximum density to show
the delocalized nature of the injected electron.

Stability of Hydrated Dielectrons J. Phys. Chem. B, Vol. 110, No. 2, 20061011



occupied state shown as the heavy black solid curve) for the
trajectory in which the injected electron was captured. Before
t ) 0, the system has the electronic structure of a single hydrated
electron, with an s-like ground state near-3 eV and three
quasidegenerate p-like excited states near-0.5 eV. The second
electron was added to the simulation cell att ) 0 with the system
placed in the fourth dielectronic state, and within 30 fs, the
system reached the ground state after several nonadiabatic
transitions. The ground state energy rapidly approaches ca.-4
eV and over a few hundred femtoseconds relaxes to ca.-6
eV, which is the energy typical of the equilibrated singlet
hydrated dielectron. For the same trajectory, the center left panel
shows the value of the root-mean-square interelectron separation,
r12 ) 〈ψ|(r̂1 - r̂2)2|ψ〉1/2,13 whereψ is the two-electron wave
function of the MF/SH reference state.25 Of course, there is no
interelectron separation before time zero when there is only one
electron in the box, but once the electron is injected, it is clear
that the two electrons work to avoid each other, keeping their
separation close to half the box size. The large fluctuations in
r12 are the result of the nonadiabatic transitions between states.
By the time the system has reached the ground state, the
interelectron separation isr12 ∼ 4 Å, which is also characteristic
of the equilibrium singlet hydrated dielectron.13 The charge
densities displayed in the panel on the bottom left also show
that the initially delocalized two-electron system relaxes to form
a more compact aspherical object inside a single cavity, i.e., a
dielectron. This trajectory is typical of those that show capture,
and these seven runs suggest that dielectrons can be formed
within ∼300 fs of injection if there is a preexisting equilibrated
electron nearby.

The panels on the right side of Figure 4 show the same
information as those on the left side of the figure, but for a
trajectory in which the injected electron was not captured. The
upper right panel shows that again the system takes∼15 fs to
reach the ground state via nonadiabatic relaxation, but for this
trajectory, once the system reaches the ground state, the adiabatic
energies are much higher than those seen when the injected
electron is captured. Not only are the adiabatic energies in this
trajectory higher than those expected for an equilibrium singlet
dielectron, they also are higher than what would be expected
for two separated (single) hydrated electrons (ca.-5.5 eV for
two separated electrons each in their ground state). However,
the two electrons are still relatively close together (only∼7 Å
apart), resulting in∼2 eV of Coulomb repulsion between them.
If this Coulomb repulsion is subtracted off, the resulting energies
are indeed only slightly higher than one would expect for two
independent (single) hydrated electrons (the difference is likely
due to heating resulting from the∼3 eV of energy added by
injecting the second electron). We note that the long-time
interelectron separation ofr12 ∼ 7 Å visible in the center-right
panel is not unique: Other runs that yielded two separate
hydrated electrons had the second electron form as far away as
r12 ∼ 10 Å. Finally, the lower right panel shows that after
relaxation, there are now two independent hydrated electrons
in separated cavities in the box; the fact that the electrons are
separate is verified by the fact that the calculated exchange
energy of the two-electron ground state is very nearly zero.

These calculations strongly suggest that hydrated electron
cavitiescan capture an additional electron. However, we do
not know how to relate the simulated 35% capture probability
to a rigorous capture cross section; this result, therefore, is only
of a qualitative nature. It seems certain that limits on the cross
section could be set by Golden Rule-type calculations of the
rate of scattering of plane waves into the bound states of a

single-electron-containing cavity, but such calculations would
probably underestimate the role of solvent relaxation in allowing
the capture. On the other hand, the simulations described in
this section may overestimate the effectiveness of solvent
relaxation in capture because the injected electron is always
forced to stay within 9 Å of theequilibrated electron due to the
finite size of the simulation box. Within our current computa-
tional approach, we can conclude that putting an extra electron
into water near a hydrated electronand keeping it thereclearly
favors the formation of kinetically stable dielectrons. It is not
unreasonable, therefore, to believe that pulse radiolysis or
multipulse multiphoton ionization experiments might lead to
the formation of dielectrons in quantities not allowed by
thermodynamic equilibrium.

V. Concluding Remarks: The Thermodynamics of
Hydrated Electrons and Dielectrons

In this paper, we used mixed quantum/classical molecular
dynamics simulations, combined with thermodynamic integra-
tion, to compute the thermodynamic stability of hydrated
dielectrons relative to (single) hydrated electrons. To the best
of our knowledge, this work represents the first theoretical
calculations of the thermodynamics of either hydrated electrons
or dielectrons. We found that hydrated electrons are thermo-
dynamically stable by∼0.4 eV relative to a system consisting
of neat water plus a zero-energy free electron; the stabilization
comes from the large energetic benefit of solvating the electron,
which is compensated somewhat by the reduced entropy of the
solvent. We also found that hydrated dielectrons are thermo-
dynamically unstable because the disruption of the solvent
structure required to solvate a dielectron increases the solvent-
solvent interaction energy by significantly more than it costs to
carve out two separate cavities. The energy penalty to the solvent
more than makes up for the fact that the dielectron energy is
∼0.5 eV less than the energy of two separated (single) hydrated
electrons. In addition, our calculations showed that there is little
additional entropic cost to solvate the dielectron: Most of the
entropy change takes place when the first electron is solvated,
and there is little entropic cost to further disrupting the solvent
upon addition of the second electron.

Our calculated thermodynamic instability of dielectrons is
not necessarily at odds with Schmidt and Bartels’ observation16

that the presence of dielectrons could explain the lack of an
ionic strength effect in the annihilation reaction of (single)
hydrated electrons. In fact, Schmidt and Bartels concluded that
two (single) hydrated electrons may form a stable, bound
complex when their centers are∼9 Å apart, and that such
complexes could produce dielectrons via tunneling of one
electron into the other hydrated electron’s “solvent trap”.16

Although we have not addressed the stability of nearby single
hydrated electron complexes, our calculations have demonstrated
that a nearly free electron may be captured by a preexisting
hydrated electron, so the tunneling mechanism suggested by
Schmidt and Bartels seems plausible.

Because of the difficulty in modeling a realistic capture
scenario in a small simulation cell, the calculations described
in Section IV do not show definitively that an equilibrated
hydrated electron can capture an additional electron. However,
the simulations certainly suggest that (single) hydrated electrons
could play this role. If this is the case, one would expect to be
able to produce dielectrons in ways other than pulse radiolysis.
For instance, one could use a sequence of two laser pulses to
first create hydrated electrons by photoionization and then create
additional electrons to be captured by the initial hydrated-
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electron population. We have suggested elsewhere26 that two
additional laser pulses would give a unique pump-probe
signature for dielectrons even in the presence of a large number
of (single) hydrated electrons, so one could imagine a four-
pulse optical experiment where the four pulses are used to (1)
produce electrons, (2) produce electrons/dielectrons, (3) pump
electrons/dielectrons, and (4) probe electrons/dielectrons. Such
an experiment would not be easy, but it does, in principle,
provide a method to produce dielectrons and observe them
directly. One also could imagine identifying dielectrons by
performing pump-probe spectroscopy on a sample prepared
with pulse radiolysis, although with pulse radiolysis the pump-
probe signature of the dielectron may be obscured by the
production of ions, radicals, and other species.

Our equilibrium simulations of dielectrons13 showed that both
singlet-paired and triplet-paired dielectrons are stable to dis-
sociation on time scales of the order of tens of picoseconds, or
longer. In view of the predicted thermodynamic instability of
dielectrons, it is clear that the kinetic stability will be of
considerable interest if indeed dielectrons may be formed by
capture. In particular, one would like to understand the rate of
dielectron dissociation to compare it to the expected rates of
the chemical reactions with the solvent that ultimately destroy
the dielectrons. It is well-known that long equilibrium simula-
tions will rarely produce dissociation events, but such events
are often understood by forming the potential of mean force
(PMF) for the reaction coordinate. We therefore should be able
to understand the kinetic stability of dielectrons by computing
the PMF between two excess electrons in liquid water as a
function of electron-electron separation. The PMF should also
shed light on the complexes of (single) hydrated electrons
postulated by Schmidt and Bartels.16 To efficiently simulate
configurations at many interelectron separations requires um-
brella sampling;34 however, neither traditional umbrella sampling
nor so-called quantum umbrella sampling35 can be used to
separate two electrons in a controlled fashion.36 We recently
have developed a new method for quantum umbrella sampling,
so we defer calculation of the electron-electron PMF to a
subsequent paper.37

In summary, we have used thermodynamic integration with
mixed quantum/classical molecular dynamics to study the
thermodynamic stability of hydrated electrons and dielectrons.
We found that hydrated electrons are thermodynamically
favorable relative to free electrons and neat water, but that there
is a significant entropic penalty paid by the solvent to accom-
modate a single excess electron. Our full CI calculations of
dielectron stability showed that although there is little entropic
cost on going from a (single) hydrated electron to a dielectron,
the energy penalty due to disrupting the solvent structure makes
dielectrons thermodynamically unstable. We also explored the
possibility that the small size of our simulation box made
dielectrons less stable due to changes in the pressure of the
simulation caused by excluded volume and electrostriction
effects, and found that the changes in pressure were too small
to make dielectrons thermodynamically stable to dissociation.
Finally, we explored the idea that (single) hydrated electrons
can act as trapping centers for additional electrons, and we
concluded that a (single) hydrated electron can capture an
electron to form dielectrons. Thus, although the calculations
presented in this paper predict that hydrated dielectrons are
unstable, they also suggest possible experiments to produce
nonequilibrium populations of kinetically stable dielectrons.
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Appendix A: Calculation of Pressures and Gibbs Free
Energies

To convert the Helmholtz free energies computed with TI
into Gibbs free energies, we must first compute the average
pressure in each of the simulation boxes. We calculated the
pressure for the neat water, single electron, and singlet dielectron
boxes from the virial,22

where the sum runs over all the classical atoms. Since we are
not simulating a constant temperature ensemble, we tried using
both the instantaneous temperature and the average temperature
in eq A1, and found that the pressure and its fluctuations were
the same in both cases. The force on each water molecule is
the sum of the classical forces from the other water molecules
and the Hellmann-Feyman force from the electron(s).38 We
found it instructive to divide the pressure into a contribution
from ideal-gas-plus-classical terms,pCLV ) NkBT + ∑jF j

CL‚r j,
and a contribution from the quantum forces,pQMV ) ∑jF j

QM‚r j,
so that the total pressurep ) pCL + pQM.

We note that the simulated pressure depends on the details
of how the long-range Coulomb interactions are treated with
periodic boundary conditions. In the results reported here, we
truncate the interactions at half the box length using a smooth
cutoff.23 The negative pressure we obtain means that absolute
pressures cannot be meaningful for the density and temperature
simulated; however, pressuredifferencesshould be meaningful
provided the compressibility of SPC/Flex water is not dramati-
cally different from that of real liquid water, as discussed below.

According to eq 8, the stability of dielectrons at a single,
common pressure,p, requires the Gibbs free energy differences
among zero, one, and two excess electron simulations at that
pressure. The calculated pressures for each simulation are
different, however, so the Gibbs free energies at the common
pressure must be determined by using the simulated free energies
at distinct pressures. This is accomplished by writing each Gibbs
free energy at pressurep, Gi(N,p,T), in terms of the simulated
Gibbs free energy,Gi(N,pi,T), using a Taylor series expansion
in the pressure,

Because∂G/∂p ) V and∂2G/∂p2 ) -VκT, whereV is the system
volume andκT is the isothermal compressibility, we find,

Note that eq A3 predicts a linear variation of∆G with pressure

pV ) NkBT +
1

3
∑
j)1

N

F j·r j (A1)

Gi(N,p,T) ) Gi(N,pi,T) +

(∂Gi(N,pi,T)

∂p )
N,T

(p - pi) + 1
2(∂2Gi

∂p2 )
N,T

(p - pi)
2 + ... (A2)

G2(N,p,T) + G0(N,p,T) - 2G1(N,p,T) =

A2(N,V,T) + A0(N,V,T) - 2A1(N,V,T) -
1
2
VκT[(p - p2)

2 + (p - p0)
2 - 2(p - p1)

2] (A3)
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even though we have computed the individual Gibbs free
energies to second order in the pressure differences.

For simplicity in writing eq A3, we assumed that the
isothermal compressibility is the same for each system simulated
in this work. We have tested this assumption by using the
fluctuations in the pressures simulated with zero-, one-, and two-
excess electrons to determine the adiabatic compressibility in
each case. At room temperature, the adiabatic and isothermal
compressibilities of liquid water are nearly the same, so we
believe comparing adiabatic compressibilities is sufficient; more
accuracy could be obtained by using the thermodynamic identity
relating the isothermal and adiabatic compressibilities via the
coefficient of thermal expansion and the specific heat,39 but we
have not pursued this possibility. The mean-square fluctuations
in the pressure give the adiabatic compressibility,κS,40

whereT is the average temperature. The same simulations that
were used to compute the average pressure giveκS = 0.7 ×
10-10 m2/N for all three cases: a box containing 200 water
molecules ((0.70( 0.01)× 10-10 m2/N); a box of 200 waters
with one excess electron ((0.71( 0.03)× 10-10 m2/N); and a
box containing 200 waters with a dielectron ((0.66( 0.09)×
10-10 m2/N). The uncertainties in the aforementioned com-
pressibilities were estimated by fitting Gaussians to the distribu-
tions of pressures and taking the uncertainties as those estimated
by the curve fitting routine in Origin 7.0. To test for finite size
effects, a 200-ps trajectory was run for a box containing 499
water molecules at the same density and temperature. The value
of the pressure differed from the 200 water molecule value
(Table 1) due to the increased cutoff distance for the interactions,
but the compressibility of the larger system was the same. We
note that for the reasons explained in the text, the corrected
Gibbs free energies presented in Table 1 used theexperimental
value of the compressibility rather than the simulated value.
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