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Abstract

We address the issue of quantum decoherence in mixed quantum classical simulations. We demonstrate that restricting the
bath paths to a single stationary path which connects an initial quantum state to a final quantum state affects a coarse graining of
the quantum subspace which leads to a macroscopic loss of quantum coherence. The coarse graining can be described in terms
of reduction mappings of the density matrix of the reduced quantum system + stationary bath path. Application of the present
model to various prototypical condensed-phase chemical problems reveals that non-adiabaticity is extremely sensitive to the
decoherence timescale. Furthermore, we derive how to obtain quantum coherence timescales from realistic mixed quantum
classical simulations and use this information to compute the non-radiative lifetimes for an excess electron in H,0 and D,0. We
demonstrate that subtle differences in the quantum coherence times provide a rationalization for a long-standing puzzle
regarding the lack of experimentally observed isotopic dependence of the non-radiative lifetime of a photoexcited electron

in H,O and D,0.
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1. Introduction

In computer simulations of condensed-phase che-
mical processes it is often desirable to partition the
system into a few select degrees of freedom which are
treated explicitly by quantum mechanics while treat-
ing the remainder as classical or quasiclassical
variables.” In these simulations, the quasiclassical
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tary material can be accessed from the THEOCHEM HomePage at
URL:http://www.elsevier.nl/locate/theochem.

* The literature on mixed quantum classical molecular dynamics
simulations is enormous: see for example [1](a). For some recently
developed adiabatic methods see [1](b).

variables are used to generate a potential energy sur-
face which defines the eigenstates of the quantum
system for a given configuration. These states in
turn define the potential surfaces which govern the
motion of the quasiclassical variables. Under the
Born—Oppenheimer approximation, the quantum
states follow the classical variables adiabatically and
no transitions occur between the quantum states.
However, transitions in the quantum system occur
when the adiabaticity conditions can no longer be
satisfied, such as when the classical motion becomes
very fast relative to the quantum evolution or the
quantum energy levels become nearly degenerate.
Such non-adiabatic or radiationless transition
mechanisms play fundamental roles in many chemical
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and biological processes. There has been a great
deal of discussion of non-adiabatic dynamical algo-
rithms and their importance to chemical reaction
dynamics in the literature, which we make no attempt
to review here (see [2](a) for a recent review). For a
few recent examples of non-adiabatic dynamical
calculations, see [2](b). The role of adiabaticity in
biomolecular electron transfer reactions is explored
in [3].

Questions regarding the validity of the partitioning
between quantum and classically described variables
arise when one is forced to consider phase interfer-
ence effects between alternative paths which the bath
variables may take over the course of the simulation
[4,5]. (For a discussion of quantum coherence and
adiabaticity in the condensed phase see [4].) On
longer timescales, there should be no interference
between alternative paths and the results from the
alternative paths can be treated as ordinary probabil-
ities. However, on short timescales, phase coherences
between alternative paths are extremely important and
affect short time transition probabilities due to con-
structive and destructive interferences. In the con-
densed phase, the rapid temporal decay of these
phase coherences, known as quantum decoherence,
severely limits the formation of long-lived quantum
superposition states and hence plays an important role
in the determination of the transition probability
between two states. Amongst the key issues at hand
is the identification of the appropriate timescales
which allow a perfectly classical treatment of the
bath dynamics in which no phase interferences
between alternative paths are considered.

In the mixed quantum classical computational
methods for including non-adiabatic transitions in
molecular dynamics-type simulations developed
most notably by Tully [6,7], Webster, Rossky and
co-workers [8—10], and most recently by Coker and
co-workers [11], the classical variables describing the
surrounding bath are allowed to “‘switch™ or “*hop™
between different adiabatic potential energy surfaces
according to a random selection criteria based upon
the propagation of the quantum amplitudes for each
adiabatic quantum state. In the methods used by Tully
[6,7] and Coker [11], these coherences are retained
throughout the course of the simulation, whereas in
the method of Webster and co-workers [8,9] a finite
computational coherence time is placed on the

quantum variables (typically one molecular dynamics
time step). A complete discussion of the merits of
each method is beyond the scope of this paper and
each method has been sufficiently described in the
literature.

Recently, we presented a theory of quantum deco-
herence suitable for mixed quantum classical systems
and numerical examples of the effect of quantum
coherence in a variety of model physical systems
[5]. Starting from the theory of decoherent histories
[12-16] we derived a quantum master equation
suitable for mixed quantum classical systems which
included a coherence timescale as an input parameter.
By varying the decoherence time we demonstrated the
profound effect decoherence has on a wide variety of
condensed-phase chemical processes involving non-
adiabatic transitions.

What is needed is a robust a priori or dynamical
estimation of the quantum coherence timescale and
the purpose of this paper is to provide the formal
mechanism for doing this. Other recent work toward
this goal has been presented by Okazaki et al. [17]
using higher-order moments of the density matrix
and an extension of the path integral influence func-
tional method in which the quantum bath is treated
implicitly.

Here we present an overview of our current theory
of quantum decoherence and its implementation in
explicit mixed quantum classical molecular dynamics
treatments of condensed-phase phenomena. We also
present sample calculations aimed at understanding
the role of decoherence in the non-radiative relaxation
of photoexcited species. Examples include a model
two-level chemical system as well as simulations of
an excess electron in H,O and D-0O.

2. Decoherent histories

Our formal analysis stems from the decoherent
histories theory by Griffiths [12], Omnés [14] and
Gell-Mann and Hartle [15,16] who were interested
in elucidating the physical origins of the classical
domain in the context of a closed quantum system,
such as the entire universe. The key element in this
theory is the notion of histories. Simply stated, a
history is a sequence of quantum mechanical projec-
tions which occur at successive moments in time. We
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define Z as the space of all possible paths (of the
combined “‘system’’ and ‘‘bath’’) which connect an
initial state, Qq, to a final state, O;. We shall label the
adiabatic quantum states by «; and the bath variables
by x. Thus, the initial and final states are completely
specified by a set of quantum states and a bath con-
figuration: Q = Q(a,x). The paths connecting the
initial and final states are completely fine grained
since the values of all the paths can be specified at
all times along the course of the path. The fundamen-
tal property of quantum mechanics is that one cannot
assign a probability to a completely fine-grained path,
only an amplitude. Making predictions (i.e. measure-
ments) or restricting the space of paths to particular
subspaces imposes coarse graining on the space of
paths and coarse-grained sets of paths are added
according to the ordinary rules of adding probabilities.
In short, completely fine-grained paths are added as
amplitudes — which is the typical ‘‘sum over Feynman
paths’’ picture for constructing the transition matrix
between the initial and final states, and coarse-grained
sets of paths are added as probabilities.

Sets of histories are obtained by partitioning the
unit operator into projectors, ?,, at various moments
in time. In the simulations which we describe later,
this corresponds to the restriction of the paths taken by
the bath variables to their stationary phase (i.e. clas-
sical) paths, xy(f). The quantum paths are thus
restricted as those which follow x(r). Thus, coarse
graining is over the the entire space of system—bath
paths. The projection operators satisfy the orthonorm-
ality conditions

PPy =043 (1)

gTa=l (2

The time development of projectors is given in the
Heisenberg representation as

Ta(t)=e+iHlTae—in (3)

Thus defined, we can write an element of the set of
histories as a string of N projections at various points
in time

Ca(x)=PQ;N-(XN)“.Paz(x?_)zpal(xl) (4)

In other words, at time ¢, we projected the combined
system onto quantum state | with bath configuration

X, at time 7, we projected the quantum subsystem
onto adiabatic state «> with bath configuration x,,
and so forth.

The Borel measure of the space of histories is given
by

P(Cq) =tr[CopoCy] (5)

where p- is the density matrix at time to. This
measure can be interpreted as a probability only
when the standard summation rules for adding prob-
abilities can be satisfied. The space of histories which
satisfies this criteria has been termed consistent or
decoherent by Gell-Mann and Hartle [15,16].
Whether a pair of histories is decoherent or consistent
is determined by the decoherence functional

D[a’ Ol’] = tr[C(xpOCa'] (6)

The sum rules for adding histories as probabilities is
satisfied when the consistency criteria

Re{D[a. o]} =0 7

True decoherence requires satisfaction of the stronger
condition

Dla,a']=0 8)

although, for purposes in condensed-phase quantum
mechanics, the two conditions are essentially
equivalent.

In mixed quantum classical simulations, quantum
mechanical histories are generated as the quasiclassi-
cal variables are allowed to switch between the adia-
batic potential energy surfaces. Let us define the
history label, «, as a series of quantum state indices
which indicate which state the quantum system was in
at a particular moment in time. In other words o =
{ay, @sy .y ayy ...} says that at some intermediate time,
f;, the quantum subsystem was determined to be in
state «;. Furthermore, we label the quasiclassical
path associated with this sequence as x“(f) which
has end-points x- at some initial time and xj" at
some later time ¢,. Alternative histories arise naturally
in the surface hopping picture since the intermediate
quantum states are chosen randomly at each time
interval according to an appropriate selection criteria
leading to bifurcations in the classical paths. Each
bifurcation corresponds to a different choice of quan-
tum state at the intermediate time. An illustration of
this is shown in Fig. 1. Thus, the projection operators
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Fig. 1. Nlustration of coarse graining. Shown in schematic form is
the time evolution of system wavefunction along various alternative
stationary phase paths, of the bath, x(r). Bifurcations in the classical
paths occur at various times due to discrete transitions in the quan-
tum system. Formally, these occur continuously along a given bath
trajectory; however, in simulations they can occur as stochastic
events. As the classical paths diverge, the overlap between alterna-
tive bath wavefunctions is decreased and coarse graining is accom-
plished. The implication of this is that the quantum state associated
with the classical path labeled x(7) will not be coherent with the state
associated with x”(¢) and wilt only remain partially coherent with the
state associated with its branch pair, x'. for a finite period of time.
described above project out a single classical trajec-
tory and an adiabatic state at each time increment and
a history is constructed by recording which adiabatic
quantum state the classical path visited at each time.
The decoherence functional tells us the relative quan-
tum mechanical phase coherence between pairs of
alternative histories at a given time.

2.1. Determining the decoherence timescale via
simulations

In order to further illustrate the concepts behind the
consistent histories method, let us consider the deco-
herence between two alternative branches over a short
time interval folowing a hopping selection. We begin
by setting the initial quantum state, ¢, to be an eigen-
state of the adiabatic Hamiltonian H(xo) where x. is
the initial classical configuration. Next, we propagate
this state forward in time to time ¢;:

d)o XO)_') Eca,¢al(x ) (9)

The propagated wave is of course a superposition of

alternative states and the coefficients {c,} are the
complex amplitude coefficients. The paths taken by
the classical particles which connect the initial con-
figuration xo to the final configurations {x]'} are
labeled by the selected quantum state at the end of
the time step. In essence, each alternative classical
path evolves on a different adiabatic potential energy
surface corresponding to a different adiabatic eigen-
state.” In order to provide a measure for the decoher-
ence, we need a representation of the entire system—
bath wavefunction for a given classical configuration.
This is accomplished by assigning to each classical
particle a Gaussian coherent state wavefunction cen-
tered about the instantaneous phase space coordinates
{x(),p(1)}. Thus, we approximate the total wavefunc-
tion for any classical configuration as

¢ (x5 ) = lo)z3) (10)

where zj; = \a{x,, +ip,/a)is a collective dimensionless
variable on the complex plane. Using this assumption,
the decoherence functional becomes

Dlayar;']={5 ko (x3")] exp { -1 J 1 dSH(x’;"(S)):|
x lpo(xo MzeXpolxo)Kza !
x exp { +i Jhtl dsH(x?l/(s))} |¢>a"(x?")|z?1’) (11)

If we make the approximation that on short timescales
the nuclear wavefunction does not disperse, we can
invoke a ‘‘frozen Gaussian’’ approximation and let
the coherent states follow the classical paths [19].
Thus, using the coherent state displacement operator

D(z)=explzd’ -2"a] (12)

the decoherence functional becomes

Dla, '] = &' 1D(E (1) zoXzo 1D (2 (1))
exp | +i(S[ (0] -S[2 (0))]
T, (6 ()T, (67 () (13)
=TT, (67 (DTS (63 (0) (14)

where @ and @' are harmonic oscillator annihilation

* As a technical note, restricting the classical evolution to a single
adiabatic surface with sudden hops between surface is problematic
since it lacks self-consistency at the transition [8]. A more precise
description of the potential is given by Pechukas [18].
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and creation operators. The displacement operator con-
tinuously shifts the centroid of the Gaussian wave from
its initial phase space position along the classical trajec-
tory to the final position. Finally, S[x}" (¢)] is the action
along the classical path x{" (), which connects the initial
point x to the final point x{" when the quantum sub-
system makes the transition from the initial adiabatic
state ) to the adiabatic state |¢]') at time ¢,.

il

1 5
S[x“‘(t)]:J ds-z—m(xa'(t))‘ (15)
Ic:

and Tal(x‘])"(t)) is the quantum transition matrix
element,

T, [ (0] = (6% (< | exp [ - iJ dsH! (r)]J 6o (o))
‘ (16)

both are functionals computed along the classical tra-
jectory x7"' ().

The classical paths are the stationary paths x*'(z)
between the initial and final end-points when the
quantum subsystem makes a transition from the initial
state to the final (i.e. post-selected) state [8,9,18]. The
corresponding potential is

o JT GOIUT (1, DHE (VU (1, 16) 90)
Volx(1)]= Re{ TS }

(17)

Here, the potential and force acting on the classical
variables at an intermediate time ¢5 < ¢ < 1, is com-
puted by back propagating the final state and forward
propagating the initial state to the intermediate time.
Variational methods based upon earlier work by
Pechukas [18] for computing the stationary phase
paths have been presented by Webster and co-workers
[8,9] and by Coker and Xiao [11].

In Eq. (14), J(¢) describes the overlap between the
propagated bath wavefunctions for each alternative
trajectory with the initial state. The two terms com-
prising J(f) can be combined using the identity for the
scalar product of coherent states

J(O) = DE (1)) zoXzo 1D (29 (1)122)
] ! 2 ’
=exp{— S0 -2 (OF -0 0

—z?*'(r)(z?‘(z))*} (18)

producing a term which gives the overlap between
alternative bath states. This becomes clear when writ-
ten in terms of the classical variables x, p. In order to
avoid cluttered notation, we shall use the abbrevia-
tions x(r)=x* (1) and x'(¢)=x7" (r) for the alternate
sets of bath variables. Thus

2 2

1
J()=exp| - S0 -x'(0) = p()-p'(0)

+i(x(n) = x"()p(D) +p'(1)] (19)

The width parameter thus far has been left arbitrary

and various criteria can be invoked. However, rigor-

ous analysis of the non-adiabatic transition rate

between displaced harmonic oscillators in the high-

temperature limit indicates that the optimal width is

found by setting [20,21]
oMKT

-

We used this as a criterion for setting the Gaussian
widths in the calculations presented below.

We can simplify matters further by recognizing that
the decoherence functional converges to zero very
rapidly and that to leading order, the decay envelop
is Gaussian in form. Thus motivated, we approximate
the classical evolution by Taylor expansion of the
stationary path about an initial starting configuration,
{xopot.

(20)

5

X(1) = xo 4ot = (o) @1

pt) = po - tfy(xo ) (22)

where the force, f,(x), is approximated from the adia-
batic potential at xo, using the Hellmann—Feynman
theorem [22,23]
oH(xp)
fulxo) ={ulxo)! d( °

X

60(x0)) (23)

where H(x) is the quantum (electronic) Hamiltonian
evaluated at the initial classical configuration, xo.

Thus, to leading order (O(¢%)), the nuclear overlap
contribution to the decoherence functional is approxi-
mately given by

J(l) ~ <exp[_t2 (fa(xo)—fo/(xO))_}> (24)

2a
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where the cosine term is the real part of the action
contribution evaluated in the short time approxima-
tion. This modulates the overlap integral at the fre-
quency of the energy difference between the different
adiabatic electronic states. Finally, we average over a
canonical ensemble of initial configurations to pro-
duce J(f) curves for a given physical system. From
these we can determine the characteristic decoherence
timescales for these systems.

3. Model calculations
3.1. Non-adiabatic relaxation of excited states

In order to elucidate the role of coherence loss in a
prototypical chemical process, we consider the pro-
blem of a classical Brownian harmonic oscillator
coupled to two electronic states. This is a classic prob-
lem in chemical physics since chemical reactions are
associated with a change in the configuration of both
the electronic structure and the nuclear configuration
of the reactants. In this example, we consider the case
in which the Hamiltonian consists of a reaction coor-
dinate x coupled to a harmonic bath with coordinates
{gx} and coupled to a two-¢clectronic level system, i.e.
the Hamiltonian is given by

H=Ho+ 30+ (g —x " (25)
n 2 2 w;mn
and
pl C?,; B
Ho=—+F.(x)- g 26
© Zm+ = (%) nEZm,,w,z,x (26)

The explicit dependence on the bath can be eliminated
by introducing the spectral density

. &

=3 nE j 0w - w;) (27)
W

For the ohmic case where J(w) = mawy o, the classical

variable, x, evolves according to the classical Lange-

vin equation
mx==V."(t) =yoi + (1) (28)

where ((f) is Gaussian random variable, yo is the
damping constant, and V - (¢) is the adiabatic potential
curve.

Here we examine a model photophysics problem in
which the initial state is prepared in the ground vibra-
tional state of the lowest electronic state, IG,n = 0),
and is excited via a short laser pulse to the first excited
electronic state. Following excitation, the vibrational
wavepacket evolves on the excited state adiabatic
potential surface. For short times, we can approximate
the nuclear motion using coherent state wavepackets
which follow the classical motion. Since the nuclear
motion is effectively coupled to the bath modes, the
centroid evolution of the coherent state will be given
by a generalized Langevin equation. Over the course
of the nuclear evolution on the excited adiabatic sur-
face, the nuclear wavepacket will traverse a region of
strong coupling between the excited and ground elec-
tronic states and can induce electronic transitions back
to the ground electronic state.

The diabatic curves and couplings are given by

Vix) = %(x—x,«)z +bx  wherei=1,2 29)

Via(x) =c exp( - dx’) (30)

The potential parameters for Eq. (30) are for a sym-
metric double well potential and are as follows: w; =
w2—300cm b=0,c=900cm™,d=10A,x.=05

A. The energy gap at x = 0 is AE = 1825 cm™. In each
case the nuclear friction constant was y = 0.1 cm ™.

Our calculations proceed as follows. At time zero,
the ground vibrational state of the ground electronic
state in the left-hand well is promoted to the excited
electronic state. The nuclear vibrational motion is
treated via the Langevin dynamics described above
and the electronic amplitudes are propagated via the
non-adiabatic Schrodinger equation.

gl )= (B0 )+ V405 (8 (31)

The diagonal elements, E A(x;t), are simply the adia-
batic eigenvalues computed when the nuclear variable
is at position x. The off-diagonal terms are the non-
adiabatic coupling matrix elements given explicitly
by

VI 0= i (o) o (2)

Electronic transitions were counted whenever the
nuclear motion ‘‘switched’” between electronic
energy surfaces. These switches were computed by
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comparing the probability to make a switch to a uni-
formly distributed random variable at each time step.
In other words, for a two-level problem, the probabil-
ity, p;i(6t), to switch between state i to state j over a
time interval 6t is given by

pij(ﬁt) R [pUVNA]@ Re[pl]VNA (33)
where p;; and p; are elements of the electronic density
matrix and represent the initial electronic population
and the phase coherence between the initial and final
electronic states. ®(x) is the Heaviside step function
which insures that the nuclear variables undergo the
fewest number of switches between adiabatic states
[7].

Quantum decoherence is introduced by periodically
reducing the quantum (electronic) wavefunction onto
a single adiabatic state using the projection operator
methods discussed above. In other words, at various
points in time, we resolve the quantum wavefunction
(which is a coherent superposition of adiabatic states)
into its components and then selecte only one of those
components as the new wavefunction (see Fig. 2).
This reduction mapping procedure is discussed in
greater detail by Bittner and Rossky [5]. As demon-
strated in [5], when the time intervals between the
projections or reduction mappings are distributed
according to a Poisson deviate, the resulting equations
of motion for the quantum density matrix is identical

2‘_ e PNt
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Fig. 2. Survival of excited state as a function of coherence time-
scales. Decreasing the quantum coherence timescale inhibits the
formation of sufficiently long-lived coherences between the ground
and excited states and hence diminishes the non-adiabatic transition
probability.

‘ I B T T
1-0‘9‘9—*?\\;090—09@090-09 -0 -6 -0-6 ©- 8- 0-0-]
E 08+ \ 1
El \ S mee L
& L iy
& 0.6 R
2 \ S
3 \ —— coherent
3 =101
5041 N -o-o1=156 )
i} . \\ —-1=5.0fs
- = 4.0fs
02+ = .
\\ o- - 1=20fs
-
— ]
0.0 . L . . .
0.0 5.0 10.0 150 20.0 25.0 30.0
time (fs)

Fig. 3. Divergence of the ground state-excited state energy gap of
the hydrated electron for trajectories propagating on the ground
versus excited state potential surfaces, starting from the same initial
configuration in the equilibrated excited state. The solid curve indi-
cates that continued propagation along the excited state produces
little change in the quantum energy gap. The dashed line shows the
rapid increase in the quantum energy gap as the electron propagates
on the ground state surface, establishing its new equilibrium.

to that of a quantum Brownian oscillator in the
absence of dissipative coupling [24,25].

In Fig. 3 we plot the survival probability of the
excited electronic state as a function of both time
and quantum coherence timescales. Here we plot the
distribution of switching times between the excited
state surface and the ground state surface as a function
of the preselected quantum coherence timescale. As
the quantum coherence timescale is decreased from
infinity (i.e. purely coherent electronic dynamics) to
very short (2 fs), the lifetime of the excited state
increases dramatically showing the profound sensitiv-
ity of the survival to the choice of coherence time-
scales in this very simple model. This reason for this
dramatic effect can be explained by a cursory glance
back at the switching probability in Eq. (33) above.
Since the reduction of the wavefunction from a super-
position state to pure eigenstate destroys any coher-
ences between the eigenstates (i.e. p; — 0 for i # j),
the probability to make a transition is diminished
because an insufficient amount of transition amplitude
has been allowed to accumulate. Indeed, when the
quantum coherence timescale is much shorter than
the ‘‘bare’” non-adiabatic transition rate, the system
can effectively become “‘trapped’” for long periods of
time in the excited state. This ‘‘quantum Zeno’’ effect
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or ‘‘quantum watched pot’’ effect has profound
implications for a number of physical systems which
undergo nonradiative relaxation process. One such
system is discussed next.

3.2. Non-adiabatic relaxation of an excess electron in
water

In this example we examine another prototypical
system: the hydrated electron. Because the hydrated
electron has only a single quantum degree of freedom,
namely the quantized cavity modes of the excess elec-
tron itself, which is strongly coupled with the nuclear
motions of the surrounding bath, the hydrated electron
provides an excellent testing ground for models of
non-radiative relaxation in the condensed phase
[8,20,21,26—34]. The large optical cross-section of
the hydrated electron also makes it amenable to spec-
troscopic investigation [35-41]. With the advent of
femtosecond laser techniques and the development
of non-adiabatic dynamical algorithms such as those
described above, the hydrated electron has provided
the first condensed system where non-adiabatic theory
and experiment have successfully converged [42].

Interest in the non-adiabatic dynamics of the
hydrated electron was originally spurred by femtose-
cond experiments studying the formation of equili-
brium hydrated electrons following multiphoton
ionization of neat water [37,38]. While the mechan-
ism of electron production in these experiments is not
fully understood [40,41], it is clear that the formation
of the equilibrium species takes place by an essen-
tially two-state process. The kinetic picture [33] that
emerged from the combination of these experiments
[37.38], adiabatic simulations [34] and non-adiabatic
calculations [8,31] points to trapping of the electron in
the lowest excited state (sometimes referred to as the
“‘wet’’ electron) followed by non-adiabatic relaxation
to the ground state (the equilibrium ‘‘solvated”’ elec-
tron). Formation of the excited state electron from the
initially produced species was found to take 110-240
fs [37,38]. The non-adiabatic relaxation time for the
electron determined in these experiments is 250—-500
fs [37,38]. Investigations of this process in deuterated
water have shown that the isotope effect on the non-
adiabatic transition rate is at most a few per cent [39].

More recent experiments [35,36] and quantum
simulations [26,29,30,32] have investigated the

non-adiabatic dynamics of the hydrated electron
by photoexciting the equilibrium ground state species
and monitoring the subsequent solvation of the
excited state and its internal conversion back to the
ground state. Upon photoexcitation, the quantum
energy gap of the hydrated electron starts at its equi-
librium ground state value and continuously
decreases with time as the excited state charge dis-
tribution is solvated. The non-adiabatic coupling
between the two states increases as the gap becomes
smaller, leading 1o an increasing non-adiabatic tran-
sition rate with time [29]. The excited state solvation
time for the photoexcited electron is 250—-300 fs, and
the non-adiabatic transition rate from the equilibrated
excited state is of the order of 1 ps™ [29,35]. Experi-
ments in D,O show identical spectral dynamics, indi-
cating little isotope effect on either the solvation
dynamics or the non-adiabatic transition rate [35].
Here we utilize non-adiabatic mixed quantum classi-
cal molecular dynamics in a large-scale simulation to
investigate the origins of quantum decoherence in this
prototypical condensed-phase system.

The simulation techniques employed are identical
to those used in earlier work by Murphrey and Rossky
[8,31], studying the relaxation of electrons photoin-
jected into neat water, as well as the present case of
photoexcitation of equilibrium hydrated electrons by
Schwartz and Rossky [29,30]. Briefly, the model con-
sists of 200 classical SPC water molecules with the
addition of internal flexibility [43] and one quantum
electron in a cubic cell of side 18.17 A (corresponding
to a solvent density of 0.997 g ml™') with standard
periodic boundary conditions at room temperature.
The electron—water interactions were described with
a pseudo-potential [44] and the equations of motion
integrated using the Verlet algorithm with a 1 fs time
step in the microcanonical ensemble (see for example
[45]). The adiabatic eigenstates at each time step were
computed via an efficient iterative and block Lanczos
scheme utilizing a 16° plane wave basis [8]; the low-
est six eigenstates were computed during non-adia-
batic molecular dynamics. Twenty configurations in
which the energy gap was resonant with the experi-
mental laser frequency [29,35] were chosen from a
35 ps equilibrated ground state run as the starting
points for non-equilibrium excited state trajectories.
The solvation of the newly formed excited state, non-
adiabatic transition times for the 20 trajectories, and a
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comparison of ultrafast spectroscopy computed from
these simulations to experiment are all available in the
literature [29,30]. A detailed microscopic analysis of
the non-adiabatic coupling and energy disposal fol-
lowing the internal conversion for these simulations
is forthcoming [46].*

Quantum coherence in these simulations was main-
tained utilizing the stationary phase surface hopping
non-adiabatic dynamics algorithm of Webster and co-
workers [8,9]. In these earlier studies of the hydrated
electron, we chose to drop coherence at the end of
each 1 fs time step; in other words, we do not utilize
the complex phases of the quantum transition ampli-
tudes, T;;, over more than one time step. This choice,
though arbitrary, was based on expectations that the
decoherence time for this system should be of the
order of 1 fs. This choice is equivalent to having a
rectangular decay of the nuclear function J(¢), i.e. J(¢)
for this algorithm starts at 1 and stays there for 1 fs,
and then instantly drops to zero for times greater than
1 fs. A modified version of this algorithm which
chooses coherence intervals based on instantaneous
values for the quantum decoherence time will allow
for dynamics with a more realistic decay of quantum
coherence [28]. The rapid divergence of the nuclear
positions on the two different surfaces (and hence,
choice of a short coherence time) is illustrated con-
ceptually by Fig. 1 . Fig. 2 shows the quantum energy
gap for the hydrated electron starting from a config-
uration equilibrated on the electronic excited state.
The solid curve follows the energy gap for continued
propagation on the equilibrium excited surface, while
the dashed curve shows the gap starting from the same
initial configuration but propagating along the ground
state surface. Clearly the nuclear configurations giv-
ing rise to the quantum energy gap on the different
surfaces must diverge rapidly. Thus, the non-adiabatic
coupling for this system must be tempered by a short
coherence time.

* We deliberately avoid using the term ““in the first solvation
shell”” since the excited state hydrated electron is an extended cylin-
drically symmetric object with a nodal plane in the center. In addi-
tion, the electron changes size and shape as solvation proceeds.
making it very difficult to rigorously define solvent shells for the
electron (see [29,46,47] for more details).

¥ The computed average excited state energy gap, at equilibrium.
for the hydrated electron is (.45 ¢V with a standard deviation of
0.15 eV.

Using the method outlined above, we can estimate
the decay of quantum coherence for the hydrated elec-
tron by computing J(f) with information available
from the excited state simulations. For the present
example, the initial state i is the equilibrium excited
state of the hydrated electron, and the final state j is
the ground state of the electron. As discussed above,
we chose

6M kT
a,= 3
/2

for the widths of the frozen Gaussian about the nth
atom, which permits a direct comparison with the ear-
lier calculations of Neria and co-workers [20,21]. To
compute the equilibrium quantum decoherence which
modulates the non-adiabatic transition from the
excited state, we take an ensemble average of Eq.
(19). Assuming that the excited state was equilibrated
at times past 1 ps, we chose 20 configurations at 25~
50 fs intervals from each of our 5 longest trajectories
for a total of 100 configurations. Since we had already
computed the eigenenergies and the excited state
Hellmann—Feynman forces on the classical particles
for all these configurations, we need only use the
eigenfunctions computed previously to determine
the Hellmann—Feynman forces along the ground
state to obtain an estimate of J(¢).

One of the largest puzzles concerning the non-adia-
batic dynamics of the hydrated electron has been the
surprising lack of a sizable isotope effect on the radia-
tionless transition rate [35,39]. A quick glance at Eq.
(32) shows that the nuclear velocities play a direct role
in determination of the non-adiabatic transition rate.
Since the fastest nuclear velocities in D»O are classi-
cally 2 times slower than those in H,O while the
other factors (the electron—water interaction potential,
the quantum force on the nuclei, etc.) remain the same
between the two solvents, the expectation is that
radiationless transition rates should be roughly half
as large in D,O compared to H-O. Indeed, mixed
quantum classical simulations have suggested isotope
effects of factors of two to four for the electronic
transition rate in this system [20,21,47]. Experiments,
however, have found at most a modest difference in
the non-adiabatic transition rate for electrons photo-
injected into H-O versus D>O [39] and no isotopic
differences have been observed in the spectroscopic
dynamics for photoexcited equilibrium electrons [35].

(34)
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Here, we explore the possible role of quantum
coherence in determining the magnitude of the non-
adiabatic transition rate for equilibrium excited state
electrons. We find that even though the non-adiabatic
coupling is smaller in D,O than H,O, a slower decay
of quantum decoherence in D,O allows this smaller
coupling to add coherently for a longer time than in
H,0, leading to estimated net electronic transition
rates which are comparable in the two solvents.

The simulation techniques we have employed to
study the solvated electron in D,O are essentially
identical to those in H,0, and are described in more
detail elsewhere [47]. Briefly, the only differences in
simulating the electron in heavy versus light water
come in changing the mass of the proton from 1 to
2 amu, and the slight change in solvent density to
accurately reflect the experimental density of D,O at
room temperature. In performing these D,O simu-
lations, carried out prior to the remainder of the pre-
sent study, we made the choice of a quantum
coherence time in the stationary phase surface hop-
ping algorithm of 1 fs, the same as for H,O. As we
will see below, the estimated coherence time in D,0
is roughly 25% longer than that in H,O. One of the
consequences of the hypothesis of equal coherence
times is that non-adiabatic trajectories remain on the
excited state significantly longer in D,0, bringing to
light a slower component of the solvation response on
the =~ 1.2 ps timescale that was not evident in our
earlier work [29,30] on H,O due to its shorter excited
state lifetime [47]. For consistency in estimating the
coherence decay by use of Eq. (19), we chose 100
excited state configurations from the D0 trajectories
at the same times ( = 1 ps) that we used for the H.O
trajectories.

Fig. 4 shows a comparison of the nuclear decay
function J(¢) for the solvated electron in H,O and in
D,0, calculated from Egs. (19) and (34). The coher-
ence decay in D0 is qualitatively similar to that in
H,0, only for D,0 the approximate Gaussian decay
time is =~ 5.6 fs (versus = 4.5 fs for H,0). We
note that the results in this figure are not in good
agreement with the previous work of Neria and co-
workers [20,21] who found almost identical coher-
ence decays for the electron in H,O and D,0. This
finding played a role in our choice of identical coher-
ence time for the electron in H,0 and D,0; see [47].
Although we cannot be sure, the difference may

)y

Time (fs)

Fig. 4. The isotope effect on quantum decoherence. The solid line
shows the full decay of quantum coherence for the hydrated elec-
tron. The dashed line shows the full decay of quantum coherence for
the solvated electron in D>O. The isotope eftect slows the coherence
decay in heavy water by = 25%; see text for details.

reflect the result of statistical fluctuations in the data
of Neria and co-workers. To evaluate the non-adia-
batic transition rate, Neria and co-workers utilized a
time-dependent form for the golden rule transition
rate which required running trajectories on both elec-
tronic surfaces [20,21], but as such trajectories are
costly, they limited their ensemble to only 15 exam-
ples. With our short time approximation, we were able
to easily include 100 examples in the determination of
the coherence decay. When we mimicked their calcu-
lation by selecting different subsets of only 15 exam-
ples for the ensemble average, we found coherence
decays that varied by nearly a factor of 3. This sug-
gests that insufficient statistics may have played a role
in their result of identical coherence decays for the
two fluids.

The longer coherence time in heavy water com-
pared to light water arises predominantly from the
difference in mass in the choice of the Gaussian
width (Eg. (34). For classical H,O and D0, the prob-
ability of a given nuclear configuration is the same.
Static ensemble properties for the two fluids should be
identical since the ensembles contain identical nuclear
configurations with equal statistical weights. Real
(quantum mechanical) water and heavy water have
slightly different properties, however, primarily due
to the difference in spatial dispersion between the
proton and the deuteron (see for example [48]).
Since the electronic Hamiltonian for the solvated
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electron is identical for both heavy and light water, the
static ensemble averaged potential energy difference
and the difference in Hellmann—Feynman forces on
the two surfaces will also be identical for the two
fluids. Thus, the only difference in the evaluation of
the coherence decay for the two fluids via Eq. (19) is
in the mass term that enters through the Gaussian
width in Eq. (34). Since the nuclear overlap part of
the coherence decay depends on the sum over nuclei,
the mass change leads to the net slower decay of
coherence in DO versus H;O. In fact, for the pur-
poses of evaluating J(r) for the solvated electron in
D,0, the H,O simulations would suffice.

The different coherence decay times in the two
solvents play a direct role in determining the isotope
effect on the overall non-adiabatic transition rate. In
simplified terms, to determine the non-adiabatic tran-
sition rate before quantum coherence has decayed,
non-adiabatic transition amplitudes should be added;
after the decoherence interval, memory of the com-
plex phases is lost and non-adiabatic transition prob-
abilities should be added. This view can be used to
estimate non-radiative transition rates in limiting
cases. During the course of the non-adiabatic simula-
tions described above, the probability of making an
electronic transition at a given time step was strictly
determined by the square of the appropriate non-adia-
batic transition amplitude, a direct consequence of the
choice to keep coherence for only one time step. Thus,
the non-adiabatic transition rate, or probability of
making the transition per unit time in this *‘incoher-
ent’” limit, is given by the sum of the squares of the
non-adiabatic transition amplitudes:

P,(Af) = i<zl |T,,(Az)3> (35)

In Eq. (35), P;(At) is the probability per unit time of
making a non-adiabatic transition between states i
and j averaged over 7 time steps along a trajectory
in the limit of keeping coherence for only one time
step (Ar). The 7 consecutive transition amplitudes,
T;(Ar), are given by Eq. (16), and the angled brackets
indicate an ensemble average over starting times and
trajectories.

If coherence were maintained over several conse-
cutive time steps, nAt, the complex transition ampli-
tudes would first be summed over those time steps,
allowing for interference, and then the square would

be taken to determine the non-adiabatic transition
probability per unit time.

o

S TV (nar) (36)

n=1

1 1
Pl:,(T)= ‘Q' NE ;wN(T, nAt)

Here, P;(7) is the probability of making a non-adia-
batic transition between states { and j per unit time
where coherence is completely maintained for 7 con-
secutive time steps. Tf]’»v'(nAt) is the non-adiabatic
transition amplitude at the nth time step starting
from the Nth configuration. In other words, we propa-
gate the quantum subsystem coherently over the
coherence time which is picked from a distribution
of possible coherence times. Once coherence has
been lost, the possible quantum paths become course
grained and we can begin to add probabilities. The
outer summation is over starting configurations and
the weights refer to the statistical probability of a
given configuration having a coherence time of 7.
The weights, wn(7,nA?), are the statistical probabil-
ities that the Nth run will have maintain coherence
for nAft time steps given that the characteristic coher-
ence time is 7. These weights are normalized by Q.
Thus, the complex transition amplitudes from pre-
vious simulations which utilized shorter coherence
times can be used to determine what the non-adiabatic
transition rate would have been if quantum coherence
were retained over an arbitrary number of time steps.
Comparison of non-adiabatic transition probabilities
determined from Eqgs. (35) and (36) as a function of
the characteristic coherence time provides a direct
measure of the influence of coherence on non-adia-
batic transition rates.

Fig. 5 displays the average lifetime for remaining
in the equilibrium excited state, {7, computed as a
function of the coherence time for the solvated elec-
tron in both H,O and D-0O. These lifetimes are aver-
aged over 3000 starting configurations drawn from the
5 longest trajectories at times past 1 ps. The average
probability per unit time of leaving the excited state
for the electron in D>O is approximately 1.2 parts per
thousand while that for the hydrated electron is
roughly half again as large. For a 1 fs time step,
these average lifetimes correspond to = 550 fs in
H,O and = 850 fs in D-,O. The magnitudes of
these rates agree reasonably with the rates obtained
from fits to the actual population decays in the
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Fig. 5. Effect of quantum decoherence on the excited state lifetime
of the hydrated electron. The dashed and solid curves show the
corresponding *‘coherent™ products of the non-adiabatic transition
amplitudes in light and heavy water, respectively. The *"coherent™
and ‘‘incoherent’” transition probabilities are identical for 1 fs
coherence time due to the simulation algorithm.

simulations and the = 2:1 simulated isotope etfect
between D,O and H,O [47] is adequately repro-
duced.® As discussed elsewhere, non-adiabatic transi-
tions usually occur from those configurations with
somewhat higher than average transition probabilities
or lower than average survival probabilities [46].
These special configurations, however, occur with a
low enough frequency that the average transition
probability provides a reasonable estimate of the
non-equilibrium population dynamics.

Fig. 5 shows the average excited state lifetimes for
remaining in the excited state for the solvated electron
in heavy and light water, respectively, computed as a
function of the coherence time 7 (P(7), Eq. (36).
Here, coherence was maintained for exactly the
same amount of time in each sample, Thus, the nor-
malized weights for each sample run are given by

wy (7, nAL)/Q =8(r - nAr) 37

For a coherence time 7 = 1 fs, these curves coincide
exactly with those computed from Eq. (35), as
expected. For coherence times longer than 1 f5,

® A simple model assuming the non-adiabatic transition probabil-
ity is inversely proportional to the quantum energy gap allows for an
estimation of the transition rate from the equilibrium excited state
(see [29,47]). The rates were estimated from the population
dynamics in the simulations to be 450 fs™' for H-O and 850 fs'
for D,O.

constructive interference between the transition
amplitudes at consecutive time steps leads to a sig-
nificant lowering of the survival probability per unit
time — in other words, increasing the quantum coher-
ence time increases the likelihood for making a non-
adiabatic transition. The magnitude and phase of the
non-adiabatic coupling in this system do not vary
much on the time scale of a few femtoseconds, so
that changes in the coherence time result directly in
changes in the electronic transition rate in this ‘“inco-
herent’’ limit.

Fig. 5 also compares the effect of using different
distributions of coherence times to compute the
excited state lifetimes. Here, we chose the coherence
time for each averaged run from a Poisson (exponen-
tial) distribution of possible coherences times. As
mentioned above, introducing a distribution of coher-
ence times is consistent with statistical treatments of
quantum dissipation/decoherence. The x-axis here is
thus the ‘‘characteristic’’ coherence timescale for the
Poisson (exponential) probability distribution func-
tion of coherence times. The normalized weights are
computed using

wy (1, nAL) /Q =exp(-nAt/T)/7 (38)

The close agreement between the exponentially dis-
tributed (Poisson) data and the single coherence time
data provides a good check on the robustness of using
a single decoherence time to approximate a distribu-
tion of coherence times. This is being used to guide
further investigations into this system and others.
Armed with the coherence decay times for both
H,0 and D,O from Fig. 4, we can make use of the
coherence time dependence of the excited state life-
times displayed in Fig. 5 to provide a revised estimate
of the isotope effect. For equal coherence decay times,
as in the original ansatz in the simulations by
Schwartz and Rossky, the survival probabilities in
Fig. 5 predict a roughly 2:1 isotope effect in the
non-adiabatic transition rate between D,0O and H,O.
This is a direct reflection of smaller non-adiabatic
coupling in D,0 due to smaller nuclear velocities.
However, for a decoherence time in D,0O which is
roughly 25% longer than that in H,O, the present
method of estimation yields non-adiabatic transition
rates in the two solvents which are identical to within
20%. For example, choosing the areas under the J(¢)
curves as estimates of the decoherence times, we
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obtain predicted lifetimes for the equilibrium excited
state of the solvated electron of 200 and 250 fs in H,O
and DO, respectively (see Fig. 5). This result pro-
vides a microscopic explanation for the lack of isotope
effect observed in the femtosecond experiments: the
smaller non-adiabatic coupling in D,O adds coher-
ently for a longer time than that in H,O; the two
opposing effects nearly cancel for this system, leading
to a non-intuitively small isotopic dependence of the
non-adiabatic transition rate.” Furthermore, the rates
reported here agree with the experimentally deter-
mined relaxation rate 310 = 80 fs reported by Bar-
bara’s group [35]. Although the absolute transition
rate constants are difficult to predict from
simulation,® Fig. 5 provides a clear demonstration
that quantum decoherence plays a direct role in the
electronic dynamics of this very important condensed-
phase chemical system.

4. Discussion

In conclusion, we have presented a theory based
upon the consistent or decoherent histories interpreta-
tion of quantum mechanics to provide a suitable
mechanism and explanation for the destruction of
quantum phase coherence in non-adiabatic quantum
molecular dynamics. We have illustrated in two
examples chosen from condensed-phase chemical
dynamics the important role of quantum decoherence.
Moreover, we have demonstrated the profound sensi-
tivity of quantum mechanical lifetimes to the quantum
coherence time. As the coherence timescale is

7 Note that since the solvation dynamics take place on slightly
different timescales in the two solvents, there would still be some
minor differences in the observed transient spectroscopy. A spectral
calculation based on the simulations which assumes identical non-
adiabatic transition rates for H,O and D,O shows that at 300 fs time
resolution, however, there would be little observable isotope effect
(see [47]).

There are many issues in trying to determine the absolute mag-
nitude of the non-adiabatic transition rate from simulations, the
chief difficulty lying in the classical treatment of the solvent. For
systems where the non-adiabatic coupling is linear in the spectral
density of the bath, it is possible to make a ‘*quantum correction’”
based on detailed balance and other factors to the semi-classically
determined rate [49]. These correction factors are not appropriate
for the hydrated electron, however, as the non-adiabatic coupling is
spread out throughout the solvent (see [46]) so that there is a dis-
tinctly non-linear relationship between the coupling and the solvent
spectral density.

reduced, the quantum system cannot form long-lived
superpositions of states and the excited state popula-
tions are diminished. This gives rise to a return to
adiabatic dynamics when the coherence timescale is
sufficiently short and the coupling between the quan-
tum and classical variables is large. This effect of
““frictional’’ damping of non-adiabatic effects may
play a key role in electron transfer reaction in many
important bioclogical processes such as photosynth-
esis, oxidative phosphorylation and redox reactions.
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