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Projections of Quantum Observables onto Classical Degrees of Freedom
in Mixed Quantum-Classical Simulations: Understanding Linear Response Failure for the
Photoexcited Hydrated Electron

Michael J. Bedard-Hearn, Ross E. Larsen, and Benjamin J. Schwartz™

Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
(Received 10 April 2006; published 27 September 2006)

We present a general analytic method for understanding how specific motions of a classical bath
influence the dynamics of quantum-mechanical observables in mixed quantum-classical molecular
dynamics simulations. We apply our method and develop expressions for the special case of quantum
solvation, allowing us to examine how specific classical solvent motions couple to the equilibrium energy
fluctuations and nonequilibrium energy relaxation of a quantum-mechanical solute. As a first application
of our formalism, we investigate the motions of classical water underlying the equilibrium and
nonequilibrium excited-state solvent response functions of the hydrated electron; the results allow us
to explain why the linear response approximation fails for this system.
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One of the principal goals of molecular dynamics (MD)
simulations is to understand how specific molecular mo-
tions of a bath influence physical processes of interest.
Often, the dynamics are analyzed using the linear response
(LR) approximation, which assumes that the solvent mo-
tions that respond to a perturbation are the same as the
motions that cause fluctuations at equilibrium. When LR
holds, equilibrium MD can be used to understand the
molecular origins of relaxation. For instance, when LR
applies, one can use the Steele theory [1,2] to project
exactly how a dynamical variable is changed by specific
bath degrees of freedom. Ladanyi and co-workers have
assumed LR and employed such projections with equilib-
rium MD to understand how specific bath motions affect
classical solvation dynamics [2,3]. Recently, we extended
the classical projections formalism to nonequilibrium MD,
and uncovered a hidden breakdown of LR [4]. Despite their
successful use in classical simulations, however, there has
been no analogous projection technique for understanding
how bath degrees of freedom (DOF) affect quantum-
mechanical observables. In this Letter, we present a new
formalism for projecting dynamical changes of quantum
expectation values in mixed quantum-classical (MQC)
simulations onto classical molecular motions. Our method
allows us to determine how any measurable quantity asso-
ciated with a quantum wave function is affected by specific
motions of a classical bath.

In classical MD, projections are performed by expand-
ing the time derivative of an observable A using the chain
rule, A = Z,Ri . VRiA, where R denotes the bath coordi-
nates and the index 7 runs over all bath DOF. Integration of
each term in the sum with respect to time gives A;, the
projection of A onto bath coordinate i [4,5]. Here, we use a
similar approach to project quantum expectation values
onto bath coordinates, and after presenting our new formal-
ism, we apply it to one of the best-studied MQC systems,
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the hydrated electron [6]. Our analysis shows clearly why
LR fails to describe the nonequilibrium solvent relaxation
following photoexcitation of this prototypical quantum
solute.

In MQC simulations, the Hamiltonian of the quantum
subsystem is H=T+70 , where T and U are the quantum-
mechanical kinetic and potential energy operators and U
depends on both the classical (R) and quantal DOF. For a
given configuration of the classical particles, the quantum
subsystem is defined in terms of the adiabatic eigenvectors
(lk)) and eigenvalues (E;) of H, and evolves according
to the classical dynamics and the time-dependent
Schrodinger equation (TDSE). The classical subsystem’s
dynamics are, in turn, driven by both the classical interac-
tion potential and the Hellmann-Feynman (HF) force, F =
—<¢|VRI_U |4), which is the force the quantum subsystem
with wave function |¢) exerts on each classical DOF, R;.
Although the above prescription dictates the precise evo-
lution of a MQC system, it does not provide information as
to which specific classical DOF influence the dynamics of
any quantum observable.

To obtain such information, our goal is to emulate the
classical Steele theory and write the time derivative of a
quantum expectation value in terms of classical gradients.
Consider a quantum Hermitian operator Q) and its expec-

tation value with the kth adiabatic state, (k|Q|k) = Q-
Using the chain rule,

%(klfllla — FOIK + KO + KO, (D)

inserting a complete set of states into the first two terms on
the right-hand side of Eq. (1), and introducing the non-
adiabatic coupling vectors, (m|k) = 3 ,R; - (m|Vy k) =
SR, - d . we obtain

mk>
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where m and k index the adiabatic eigenstates of H, £),,, =
(m|Q|k), and the sum on i runs over the classical DOF.
Although the sum on m formally runs over all states, it
likely can be truncated in many practical applications.
Thus, Eq. (3) shows that projections of (), onto specific
classical coordinates depend on how the velocities of rele-
vant classical DOF alter the adiabatic eigenstates, which in
turn alter the quantum expectation value.

Equation (2) is valid for expectation values associated
with a single adiabatic state, but in nonadiabatic MQC
simulations, the quantum subsystem is often described as
a superposition of adiabatic eigenvectors, [¢) = Y a,|k),
or a mean-field (MF) state. The projections for quantum
observables associated with MF states proceed in a similar
manner as for adiabatic states, but the evolution of the
density matrix, p; = ajay, leads to an unusual cancella-
tion of terms. Using the TDSE,

. . . i

P = ZRi (puedyy — pimd),) T %pkk’Ekk” 3)

m,1

where E = E; — Ep, we see that

d i . .
E@MQW) = %%pkk’ﬂkk’Ekk’ + ZR,' (Y| Vg, Q)
= %Zpkk’ﬂkk’Ekk’ +> “4)

kk' i

where the nonadiabatic coupling terms from the derivatives
of the eigenvectors [cf. Eq. (2)] exactly cancel the identical
terms from the derivative of the density matrix in Eq. (3).
The first term in the final expression of Eq. (4) arises from
quantum phase evolution in the TDSE; it has no explicit
dependence on the classical particles’ motions and van-
ishes if either €} or the density matrix is diagonal in the
chosen basis. In addition, if Q) has no explicit R depen-
dence, then the second term in the final expression of
Eq. (4) also vanishes, so there appears to be no expression
analogous to Eq. (2) that determines how the bath DOF
influence expectation values associated with quantum su-
perposition states. If Q) does have explicit R dependence,
however, then the second term in Eq. (4) provides the
desired information. For either Eq. (2) or Eq. (4), the
projection onto a classical coordinate i is found by inte-
grating either Q}, or Q' with respect to time,

Qi) — Qi(0) = ﬁ ' drQi(t). )

Thus, Egs. (2), (4), and (5) allow us to project the dynamics
of quantum solutes, even those described by superposition
wave functions, onto specific motions of a classical bath.

To illustrate the application of our formalism in MQC
simulations, we consider the case of a classical solvent
causing the energy of a quantum solute to relax following
excitation. The nonequilibrium relaxation dynamics are
described by the solvent response function,

S(1) = [AE(1) — AE(0)]/[AE(0) — AE(e0)],  (6)

where the overbar denotes a nonequilibrium ensemble
average and AE = (y|H|y) — (0|H|0) is the energy gap
between the excited (i) and ground (|0)) states of the
quantum solute. In the limit of LR, the nonequilibrium
response function is equal to the equilibrium solvation
correlation function,

C(r) = (BAE()SAE(0))/{(SAE)?), )

where the fluctuations from the average energy gap [7] are
SAE(t) = AE(r) — (AE), and the angled brackets denote
an equilibrium ensemble average. [Although LR implies
that S(¢) ~ C(z), the converse is not necessarily true—the
breakdown may be hidden [4].]

To project the nonequilibrium and equilibrium solvation
dynamics onto the motions of classical particles, we take
the first time derivative, J(r) = $(1), of Eq. (6),

J() = 3 AE()/(REQ) - AE(®) = YT, ()
and the second derivative, G() = —C(z), of Eq. (7),

(AE{(DAE;(0))
Gt =y ———1—==>NG;). ©)
Zj ((8AE)?) Z, !

By numerically integrating each projected J;(#) once and
each G; j(t) twice with respect to time [4] and finding the
appropriate constants of integration (see EPAPS supple-
mentary material [14]), we obtain the desired nonequilib-
rium and equilibrium projections, S;() and C;;(1),
respectively. Since both Egs. (8) and (9) have O =4,
the desired derivatives from Eqs. (2) and (4) are

d .~ . e
E<k|H|k> = _ZRi . Fk = Z,:E ,
d A . ) .. (10)
PRLIEES YRR Y

where Fi = —(kIVRiﬂ |k) is the adiabatic HF force. The
classical Cartesian velocities R; can be converted into
relative solute-solvent coordinates via unitary transforma-
tions. For example, the center-of-mass (c.m.) velocity of
each classical particle can be separated into a longitudinal
translation (directly toward or away from the quantum
solute’s center of mass) and two lateral orthogonal trans-
lations. Equations (8)—(10) provide everything needed to
quantify exactly how specific classical solvent motions
such as translations or rotations affect the solvation dy-
namics of quantum solutes. They are analogous to the
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classical projection formalism [2,4]; the difference is that
the force in Eq. (10) is not classical but is instead the HF
force, as appropriate for a MQC system.

We now apply these new tools [Egs. (8) and (9)] to
explore the molecular basis of solvation following photo-
excitation of the hydrated electron (egyd). The details of our
MQC simulations are given elsewhere [8]; briefly, the
system contains 200 classical SPC-Flex water molecules
[9] and a single excess quantum electron that interacts with
the solvent via a pseudopotential [10]. To study the equi-
librium solvent response [Eq. (7)] of the €pyg> WE ran two
uncorrelated 50-ps trajectories in which the electron was
confined to its adiabatic ground state and the velocity
Verlet algorithm was used to propagate the classical dy-
namics with a time step of 1 fs. To study the nonequilib-
rium solvent relaxation [Eq. (6)], we ran 50 nonequilibrium
trajectories (using a 0.125-fs time step), with initial con-
figurations taken from 25 uncorrelated configurations ex-
tracted from the equilibrium trajectories (with initial
velocities reversed to obtain a second initial condition
per starting configuration). Each nonequilibrium trajectory
mimicked a one-photon Frank-Condon excitation by in-
stantly promoting the electron to an adiabatic excited state
2.27 =0.01 eV above the ground state and concluding
when the €hyd nonadiabatically returned to the ground
state.

Previous calculations by Schwartz and Rossky [6] found
that S(¢) is similar to C(¢) for the excited €pyas SUggesting
that LR holds for this system. This result is surprising given
that studies of classical solvation have shown that when
solutes change size or shape, LR typically does not apply
[15]. Since the hydrated electron undergoes a shape change
upon excitation (from s-like to p-like), we expect that the
underlying dynamics coupling to the equilibrium and non-
equilibrium solvation processes should be quite different.
Hence, we have revisited the solvation dynamics of this
system, and Fig. 1(a) shows that S(r) and C(¢) are in fact
different, even at the earliest times when the LR approxi-
mation is expected to be most applicable. The difference
between our results and those in Ref. [6] may stem from the
different nonadiabatic MQC algorithms used here and in
Ref. [6] (see Ref. [8]), or from the poor statistical sampling
in Ref. [6], which used only 20 nonequilibrium trajectories
instead of the 50 used here [16].

To understand the breakdown of LR for the Chyd evident

in Fig. 1(a), we calculated time-integrated projections of
both the nonequilibrium [Fig. 1(a), Eq. (8)] and equilib-
rium [Fig. 1(b), Eq. (9)] solvent response functions onto
various classical DOF. Figure 1 shows such projections
onto the water c.m. translations, Syans and Cians, as well as
the longitudinal component of the water c.m. translations
(discussed above), Siope and Ciype. The figure also shows
the sum of the projections onto all the rotational and vibra-
tional DOF, taken as the difference between the total
solvent response and the total c.m. translational projection,

ie., Sy = Siot — Suans; We note that C,_, also contains
cross terms that do not appear in the nonequilibrium pro-
jections [2,4].

The water molecules in our simulations are flexible, so
there is no strict way to project separately their vibrational
and rotational motions. As a result, we separated the con-
tributions of rotational and vibrational modes using Fourier
analysis. The librational modes of SPC-Flex water have
frequencies less than ~1000 cm ™! and are spectrally well
separated from the vibrational modes, whose frequencies

0.751

o
o

0.25+

200 300 400 500 600

Solvent Response
o

0 100
y
(b) Cf) ——  Co(l) crrreres
.. (0 (D)
CIong( f) ——-
0.6+
~. Ctrans(t) -
0.4+ Q:
)
T T
0 oy = v .:-1 =-|_ ‘_._—
0 250 500 750 1000
Time /fs
FIG. 1. (a) Comparison between the total nonequilibrium, S(7),

and equilibrium, C(7), solvent response functions [Egs. (6) and
(7)] showing the breakdown of LR for the €hyd- Integrated
projections of the nonequilibrium solvent response onto various
(classical) water motions [Eq. (8)] are also shown: S, is the
contribution of all c.m. translations, )y, is the projection onto
the longitudinal component of the c.m. translations (see text),
and §,_, is the sum of the projections onto the vibrational and
rotational motions. The normalization for all of the nonequilib-
rium curves is AE(0) — AE(c0) = 1.47 eV. (b) The total equi-
librium solvent response function [Eq. (7)] and integrated
projections of it onto different classical motions [Eq. (9)]; the
subscripts used for each projection are the same as in panel (a),
except C,., also includes cross correlations. The error bars
shown are *2 standard deviations [14]. The slight difference
between the C(f) curves in panels (a) and (b) results from a filter
{exp[—(#/1500 fs)*]} applied before integrating to obtain the
curves in panel (b) [14].
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lie between ~1700 and ~4000 cm™~!. We found (see
EPAPS supplementary material [14]) that librations domi-
nate both S,_,(¢) and C,_,(¢) and that vibrational coupling
is negligible. Thus, the S,-, and C,_, curves plotted in
Fig. 1 represent essentially pure librational projections of
S(¢r) and C(¢). Note that a spectral density analysis of the
total §(t) and C(z) could not have distinguished contribu-
tions from translational or librational DOF since water
translations and librations have overlapping frequency
ranges. Our new formalism, however, allows us to cleanly
isolate the role of each classical degree of freedom in the
nonequilibrium solvent relaxation, S(z), as well as all of the
cross terms in the equilibrium solvent response, C(7).

The projections of S(¢) and C(¢) make it easy to see that
the classical motions underlying the equilibrium and
nonequilibrium solvent relaxation of the e, are quite

different. Figure 1(b) shows that solvent librations and
translations contribute equally to C(¢) [if we had examined
only G,_,(f) and G,(7), rather than integrating to obtain
C,_,(t) and Cy,,(1), we would not know that rotations and
translations couple with equal magnitude to C(¢) because
the second derivatives contain information only about the
curvature of the response, not the magnitude or time scales
[14]]. In contrast, Fig. 1(a) indicates that librational mo-
tions, which move H atoms into the node of the excited
p-like wave function [6], dominate the nonequilibrium
solvent relaxation. Both at and away from equilibrium,
translational solvent motions occur on a single time scale,
with longitudinal motions comprising ~90% of the total
translational response. The librational responses, however,
are quite different at and away from equilibrium. The
equilibrium librational response, C,.,, occurs on two dis-
tinct time scales and is characterized by a rapid inertial
relaxation that accounts for ~1/3 of the total solvation
followed by a slower component that is not complete until
t > ~500 fs. In contrast, the nonequilibrium librational
response, S,-,, is nearly complete within ~50 fs and plays
only a minor role in the total nonequilibrium relaxation
after 100 fs. Thus, our projection analysis demonstrates
that not only do different solvent motions contribute to
relaxation with different amplitudes at and away from
equilibrium, but also that the equilibrium and nonequilib-
rium solvent dynamics are composed of entirely different
types of solvent motions; the large size and shape changes
that the €hyd undergoes upon excitation alter the solute-
solvent coupling, leading to a breakdown of LR [15].

In summary, we have presented a new formalism for
projecting how classical motions affect quantum observ-
ables in MQC MD simulations. Our method can be applied
to any quantum operator and provides precise, molecular
detail about the coupling between quantum solutes and
classical motions. We applied our method to study the
solvent relaxation of the prototypical MQC system, the

photoexcited Chyd> and found that entirely different solvent

motions were responsible for the equilibrium and nonequi-
librium solvent relaxation, explaining the breakdown of
LR for this system. Finally, our new formalism could be
used to study how quantum-mechanical spins, electron or
proton transfer reactions, and quantum-mechanical tunnel-
ing rates are modulated by specific bath DOF.
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